Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
基本信息
- 批准号:10372321
- 负责人:
- 金额:$ 21.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-21 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:37 weeks gestationAddressAdhesionsAnimal ModelApicalAutomobile DrivingBacteriaBacterial InfectionsBiological ModelsBirthCellsCharacteristicsClinicalClinical ResearchCollagen Type IVComplexDevelopmentDiagnosisDiscipline of obstetricsDiseaseEarly DiagnosisEarly InterventionEmbryonic DevelopmentEpithelialEtiologyExperimental ModelsExtracellular MatrixExtravasationGoalsHumanImageImmune responseInflammationInflammatory ResponseInterventionInvestigationKnowledgeLeadLinkMedicalMembraneMesenchymalMethodologyMicrofluidicsModelingMolecular TargetMorbidity - disease ratePathologicPathologyPerinatalPharmaceutical PreparationsPoisonPregnancyPregnancy ComplicationsPremature BirthPrevalencePreventionProcessReproducibilityResearchResolutionRisk FactorsRoleSamplingScreening procedureStudy modelsSurfaceSystemTestingTimeTissue membraneTissuesUnited States National Institutes of Healthadverse outcomeamnionamniotic cavitybasecytokineexperimental studyfetalhigh throughput screeninghuman pluripotent stem cellhuman tissueimplantationinnovationinnovative technologiesintraamniotic infectionmembrane modelmolecular markermonolayermortalityneonatal outcomeorgan on a chippathogenic bacteriaprenatalpreterm premature rupture of membranespreventpublic health relevancescreeningtooltrafficking
项目摘要
Project Summary
Intra-amniotic infection, also referred to as chorioamnionitis, is a major etiological factor of preterm premature
rupture of the membranes (pPROM), leading to preterm birth. Despite its prevalence and grave consequences,
the pathology of intra-amniotic infection has yet to be completely understood due to a lack of tractable human-
relevant models. Even though animal models of preterm birth have been successfully developed for testing
medical interventions of intra-amniotic infection, they remain suboptimal for quantitative studies of dynamic
bacterium-amnion interactions in the intrauterine cavity. The scarcity of preterm human amnion samples,
especially from early/mid-gestation stages, also prevents these human tissues as experimental models for
studying intra-amniotic infection and its functional link to pPROM. Altogether, there is a critical need for
quantitative, tractable, human-relevant amnion membrane models for advancing fundamental understanding of
intra-amniotic infection.
The primary goal of this NIH R21 project is to specifically address this significant technological need, by
developing a human-relevant amnion membrane model that can faithfully recapitulate the interaction between
bacteria and amnion membrane tissues, and at the same time, allow high-resolution, quantitative experiments
to study mechanisms underlying bacterial invasion of the amniotic cavity. In our preliminary study, we have
unexpectedly discovered the amniogenic differentiation potency of human pluripotent stem cells (hPSCs) and
successfully developed an hPSC-based, synthetic microfluidic embryogenesis platform in which key
developmental landmarks during early human post-implantation development can be recapitulated
successively in a highly controllable and scalable fashion. Importantly, we also observed sensitive
inflammatory response of hPSC-derived amniotic cells to bacterial infection. Thus, in this research we propose
to leverage the amnion differentiation potential of hPSCs, in conjunction with innovative microfluidics, to
develop the first-of-its-kind human amnion membrane organ-on-chip system. We will further apply this tractable
experimental system to quantitatively study the dynamics of bacterial invasion of the amniotic cavity and to
elucidate the functional connection between inflammation-induced amniotic membrane remodeling and intra-
amniotic bacterial trafficking. Successful accomplishment of this proposed research will lead to innovative
technologies and methodologies for controllable, reproducible, and scalable manufacturing of human amnion
membrane tissues, offering a tractable experimental system for studying related pregnancy complications,
including intra-amniotic infection. The reproducibility and scalability of the human amnion membrane organ-on-
chip system will make it a promising screening platform to explore complex interactions between the human
amnion membrane, bacterial pathogens, drugs and toxic substances.
项目概要
羊膜内感染又称绒毛膜羊膜炎,是早产的主要病因。
胎膜破裂(pPROM),导致早产。尽管其普遍存在且后果严重,
由于缺乏可处理的人类治疗方法,羊膜内感染的病理学尚未完全了解。
相关型号。尽管早产动物模型已成功开发用于测试
尽管羊膜内感染的医疗干预措施仍然不适合动态定量研究
宫腔内细菌与羊膜的相互作用。早产人类羊膜样本的稀缺,
特别是从妊娠早期/中期阶段开始,也阻止这些人体组织作为实验模型
研究羊膜内感染及其与胎膜早破的功能联系。总而言之,迫切需要
定量、易处理、与人类相关的羊膜模型,用于增进对
羊膜内感染。
NIH R21 项目的主要目标是专门解决这一重大技术需求,方法是
开发与人类相关的羊膜模型,可以忠实地再现羊膜之间的相互作用
细菌和羊膜组织,同时允许高分辨率、定量实验
研究细菌侵入羊膜腔的机制。在我们的初步研究中,我们有
出人意料地发现了人类多能干细胞(hPSC)的羊膜分化能力,
成功开发了基于 hPSC 的合成微流控胚胎发生平台,其中关键
可以概括早期人类植入后发育过程中的发育里程碑
以高度可控和可扩展的方式连续进行。重要的是,我们还观察到敏感
hPSC 来源的羊膜细胞对细菌感染的炎症反应。因此,在本研究中我们提出
利用 hPSC 的羊膜分化潜力,结合创新的微流体技术,
开发出首个人类羊膜器官芯片系统。我们将进一步应用这一易于处理的
定量研究细菌侵入羊膜腔动态的实验系统
阐明炎症诱导的羊膜重塑与体内羊膜重塑之间的功能联系
羊膜细菌贩运。这项拟议研究的成功完成将带来创新
用于可控、可重复和可扩展的人类羊膜制造的技术和方法
膜组织,为研究相关妊娠并发症提供了一个易于处理的实验系统,
包括羊膜内感染。人羊膜器官的再现性和可扩展性
芯片系统将使其成为一个有前景的筛选平台,用于探索人类之间复杂的相互作用
羊膜、细菌病原体、药物和有毒物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 21.84万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 21.84万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 21.84万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 21.84万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 21.84万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 21.84万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 21.84万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 21.84万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Radioresistant Innate Immunity in SAVI Tissue-Specific Autoinflammation
SAVI 组织特异性自身炎症中的抗辐射先天免疫
- 批准号:
10752556 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
- 批准号:
10754079 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别: