Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
基本信息
- 批准号:10369029
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAlagille SyndromeAnteriorBehaviorBiochemicalBiochemical GeneticsBiological AssayBiological ClocksBiological PacemakersBiomechanicsBiophysicsCADASILCartilageCell CommunicationCell DensityCell divisionCell physiologyCellsCharacteristicsComplexCuesDataDefectDermisDevelopmentDevelopmental ProcessDimensionsDiseaseDissectionEmbryoEndotheliumEnvironmentFertilizationFibroblast Growth FactorFibronectinsFingerprintGlassGoalsHourHumanImageImpairmentIn VitroIndividualKnowledgeLinkMalignant NeoplasmsMeasurementMechanicsMesodermMesoderm CellModelingMolecularMonitorMusPaperPathway interactionsPatternPattern FormationPeriodicityPhenotypePhysiologicalPhysiological ProcessesPlayPrintingProcessRegulationResearchRoleSegmentation Clock PathwaySignal TransductionSkeletal MuscleSleeplessnessSomitesSourceStretchingSurfaceSystemTendon structureTissuesVertebratesZebrafishcell behaviorcell motilitydevelopmental diseaseexperiencein vitro Assayinsightlive cell imagingmechanical propertiesmechanical signalmonolayerphysical propertyprecursor cellpreservationprogenitorresponsescoliosissomitogenesisspatiotemporalspine bone structurestem cellstoolvertebrate embryos
项目摘要
Project Summary
Biological oscillators are essential to a variety of cellular, physiological and developmental processes, such as
cell divisions, heartbeats, and somitogenesis. Impaired biological oscillators cause diseases from insomnia to
cancer and have a significant impact on development and differentiation. Segmentation clock, a biological
oscillator well-conserved from zebrafish to humans, plays a key role in regulating the periodic somite formation
during vertebrate embryo somitogenesis. Although the central molecular players of the segmentation clock have
been long identified, the clock is embedded in a large intra- and inter-cellular network, and how it responds to
the complicated mechanical and biochemical microenvironments remains largely unknown. The goal of this
proposal is to develop an in vitro assay that enables the quantitative dissection of the complex processes
involved in the zebrafish somitogenesis. Presomitic mesoderm (PSM) cells, the precursor cells involved in the
somitogenesis, will be isolated from zebrafish embryos and cultured and examined under an array of
micromechanical tools with tunable mechanical cues (both substrate rigidity and mechanical stretching) across
a physiological range. Live imaging will be conducted to track cell behaviors, to monitor their oscillatory
behaviors, intracellular signaling activities and cell mechanics (including both cytoskeletal contractility and cell
stiffness) as a function of substrate rigidity and mechanical stretching. Importantly, our studies will be conducted
for both single cells as well as in the context of cell colonies where cell-cell communications are preserved.
Together, our proposed studies will lead to new knowledge about how the mechanical and biochemical
microenvironments jointly regulate PSM cells that self-organize into developmental patterns.
项目概要
生物振荡器对于各种细胞、生理和发育过程至关重要,例如
细胞分裂、心跳和体节发生。生物振荡器受损会导致失眠等疾病
癌,并对发育和分化有重大影响。分段时钟,生物钟
从斑马鱼到人类都保存完好的振荡器,在调节周期性体节形成中起着关键作用
在脊椎动物胚胎体细胞发生过程中。尽管分段时钟的核心分子参与者
人们很早就发现,时钟嵌入在一个大型的细胞内和细胞间网络中,以及它如何响应
复杂的机械和生化微环境在很大程度上仍然未知。此举的目标
建议开发一种体外测定方法,能够定量剖析复杂的过程
参与斑马鱼的体细胞发生。前体中胚层 (PSM) 细胞,参与发育的前体细胞
体节发生,将从斑马鱼胚胎中分离出来,并在一系列条件下进行培养和检查
具有可调机械线索(基材刚性和机械拉伸)的微机械工具
一个生理范围。将进行实时成像来跟踪细胞行为,监测其振荡
行为、细胞内信号活动和细胞力学(包括细胞骨架收缩性和细胞
刚度)作为基材刚度和机械拉伸的函数。重要的是,我们的研究将进行
对于单个细胞以及保留细胞间通讯的细胞集落而言。
总之,我们提出的研究将带来关于机械和生化如何进行的新知识。
微环境共同调节 PSM 细胞自组织成发育模式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
相似海外基金
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Investigation of Notch signaling in the regulation of ciliary body development and function
Notch信号在睫状体发育和功能调节中的研究
- 批准号:
9220447 - 财政年份:2017
- 资助金额:
$ 18.34万 - 项目类别:
Cell-Cell Signaling During Mammalian Early Eye Formation
哺乳动物早期眼睛形成过程中的细胞间信号传导
- 批准号:
7579777 - 财政年份:2008
- 资助金额:
$ 18.34万 - 项目类别:
Cell-Cell Signaling During Mammalian Early Eye Formation
哺乳动物早期眼睛形成过程中的细胞间信号传导
- 批准号:
7367571 - 财政年份:2008
- 资助金额:
$ 18.34万 - 项目类别: