Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
基本信息
- 批准号:9805605
- 负责人:
- 金额:$ 42.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAutologousBiologyCell TherapyCellsChemical StimulationChemicalsCodeCystDevelopmentDevicesDiagnosisDisease modelDrug toxicityEctodermEmbryoFoundationsGene Expression ProfileGenerationsGeneticGoalsGrowth and Development functionHumanImpairmentInvestigationLeadLifeLiquid substanceMeasurementMethodologyMicrofluidic MicrochipsMicrofluidicsModelingMorphologyNervous system structureNeural Tube DevelopmentNeural tubeNeuraxisNeuroepithelialNeuroepithelial CellsNeuronsOrganoidsPathologyPatternPattern FormationPositioning AttributePreventionProcessPropertyProtocols documentationReproducibilityResearchRouteSHH geneSignal InductionSignal TransductionSpecific qualifier valueSpinalSpinal CordStem Cell DevelopmentStem cellsStructureSystemTarget PopulationsTissuesTubular formationUnited States National Institutes of Healthbasecell transformationhuman pluripotent stem cellhuman tissueinnovationinnovative technologiesmorphogensnerve stem cellnervous system developmentnervous system disorderneural patterningneural plateprecursor cellprogenitorprogramspublic health relevancequantumrelating to nervous systemscreeningself organizationsmoothened signaling pathwaytranscription factor
项目摘要
Project Summary
During development of the vertebrate nervous system, a vast array of neurons will develop in discrete
anatomical positions, acquire varied morphological forms, and establish connections with specific populations
of target cells. Such spatial organization of cell fates and differentiation during the development of the nervous
system are directed by concentration gradients of chemical signals, termed morphogens. Even though the
importance of graded morphogen signaling in developmental pattern formation has been well recognized, it
remains a significant question in biology about how embryonic progenitor cells transform dynamic changes in
developmental signaling into spatial patterns of gene expression and cellular differentiation in a reliable and
robust fashion. The long-term functional goal of this NIH R21 project is to specifically address the significant
challenge in understanding the interpretation of morphogen gradients by intracellular signaling cascades while
embryonic precursor cells are undergoing multicellular self-organization during developmental patterning.
Specifically, we propose to leverage the intrinsic lumenogenic and self-organizing properties of neuroepithelial
(NE) cells, the embryonic precursor cells in the neural tube, in conjunction with an innovative microfluidic
embryological device, to achieve controllable and reproducible generations of lumenal NE cysts to mimic un-
patterned spinal cord tissues. High-purity NE cells will be derived from human pluripotent stem cells (hPSCs)
using established 2D directed differentiation protocols. Lumenal NE cysts will then be utilized seamlessly in
the same microfluidic device for downstream asymmetrical patterning using the morphogen Sonic hedgehog
(Shh) to achieve progressive acquisition of ventral neuronal subtypes in the spinal cord. Successful
accomplishment of this proposed research will lead to the establishment of an innovative microfluidics-based
methodology for controllable, reproducible, and scalable generation of (autologous) human spinal cord tissues
from hPSCs, a quantum leap compared with existing 3D organoid culture systems that are known to lack
controllability and reproducibility. Furthermore, our synthetic patterned human spinal cord model will provide a
very useful experimental platform that offers superior experimental controls of key parameters and quantitative
measurements to allow in-depth mechanistic investigations on the emergent self-organizing principles and
pattering mechanisms that provide robustness and reliability to embryonic patterning, a long-standing question
in biology.
项目摘要
在脊椎动物神经系统的开发过程中,会在离散中发展大量神经元
解剖位置,获得多样化的形态形式,并与特定人群建立联系
目标细胞。这种空间组织的细胞命运和神经发展过程中的分化
系统由化学信号的浓度梯度指导,称为形态学。即使
在发育模式形成中分级形态学信号传导的重要性已得到充分认识,
关于胚胎祖细胞如何改变动态变化的生物学仍然是一个重要的问题
在可靠和
强大的时尚。该NIH R21项目的长期功能目标是专门解决重要的问题
通过细胞内信号级联对形态梯度解释的挑战,而
胚胎前体细胞在发育模式期间正在经历多细胞自组织。
具体而言,我们提议利用神经上皮的内在腔源和自组织特性
(NE)细胞,神经管中的胚胎前体细胞,并与创新的微流体结合
胚胎设备,以实现可控和可重复的世代的腔内囊肿,以模仿
图案化的脊髓组织。高纯度NE细胞将源自人多能干细胞(HPSC)
使用已建立的2D定向分化协议。然后将无缝地使用Lumenal NE囊肿
使用形态学刺猬的同一用于下游不对称图案的微流体装置
(SHH)以逐步获得脊髓中腹神经元亚型的逐步获取。成功的
这项拟议的研究的完成将导致建立创新的基于微流体的研究
可控,可重现和可扩展生成(自体)人脊髓组织的方法
与现有的3D类器官培养系统相比,HPSC从HPSC中进行了量子飞跃
可控性和可重复性。此外,我们的合成图案化的人脊髓模型将提供
非常有用的实验平台,可为关键参数和定量提供卓越的实验控制
测量以允许对新兴自我组织原则和
具有对胚胎构图的稳健性和可靠性的图案机制,这是一个长期存在的问题
在生物学中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 42.16万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 42.16万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 42.16万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别: