Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
基本信息
- 批准号:10701041
- 负责人:
- 金额:$ 41.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionBehavioralBig Data MethodsBiologicalBiological AssayBiological MarkersCodeCollaborationsCollectionCommunitiesComputer softwareDataData SourcesDevelopmentDimensionsDiseaseElectronic Health RecordEvaluationFosteringGalaxyGenetic studyGoalsHeartImaging technologyIndividualLinear ModelsMeasurementMeasuresMedical ImagingMethodsModelingMolecularMultiomic DataOutcomePhenotypeProceduresR programming languageResearch PersonnelSample SizeScientistScreening procedureSoftware ToolsStructureSystemTechnologyTestingTrans-Omics for Precision MedicineUncertaintyWorkbig biomedical datacomputational pipelinesdata integrationdesigndiverse dataeffective therapyexperimental studyheterogenous datahigh dimensionalityimprovedinterestmachine learning methodmembernovelopen sourcepublic health relevancescreeningsimulationstatistical and machine learningstructured datatooltreatment strategyuser friendly software
项目摘要
Project Summary
This project develops novel statistical inference procedures for biomedical big data (BBD), including data from diverse
omics platforms, various medical imaging technologies and electronic health records. Statistical inference, i.e., assess-
ing uncertainty, statistical significance and confidence, is a key step in computational pipelines that aim to discover new
disease mechanisms and develop effective treatments using BBD. However, the development of statistical inference
procedures for BBD has lagged behind technological advances. In fact, while point estimation and variable selection
procedures for BBD have matured over the past two decades, existing inference procedures are either limited to simple
methods for marginal inference and/or lack the ability to integrate biomedical data across multiple studies and plat-
forms. This paucity is, in large part, due to the challenges of statistical inference in high-dimensional models, where the
number of features is considerably larger than the number of subjects in the study. Motivated by our team's extensive
and complementary expertise in analyzing multi-omics data from heterogenous studies, including the TOPMed project
on which multiple team members currently collaborate, the current proposal aims to address these challenges. The first
aim of the project develops a novel inference procedure for conditional parameters in high-dimensional models based
on dimension reduction, which facilitates seamless integration of external biological information, as well as biomedical
data across multiple studies and platforms. To expand the application of this method to very high-dimensional models
that arise in BBD applications, the second aim develops a data-adaptive screening procedure for selecting an optimal
subset of relevant variables. The third aim develops a novel inference procedure for high-dimensional mixed linear
models. This method expands the application domain of high-dimensional inference procedures to studies with longitu-
dinal data and repeated measures, which arise commonly in biomedical applications. The fourth aim develops a novel
data-driven procedure for controlling the false discovery rate (FDR), which facilitates the integration of evidence from
multiple BBD sources, while minimizing the false negative rate (FNR) for optimal discovery. Upon evaluation using ex-
tensive simulation experiments and application to multi-omics data from the TOPMed project, the last aim implements
the proposed methods into easy-to-use open-source software tools leveraging the R programming language and the
capabilities of the Galaxy workflow system, thus providing an expandable platform for further developments for BBD
methods and tools.
项目摘要
该项目开发了生物医学大数据(BBD)的新型统计推断程序,包括来自潜水员的数据
OMICS平台,各种医学成像技术和电子健康记录。统计推断,即评估 -
不确定性,统计学意义和信心是计算管道的关键步骤,旨在发现新的
疾病机制并使用BBD开发有效的治疗方法。但是,统计推断的发展
BBD的程序落后于技术进步。实际上,虽然点估计和可变选择
BBD的程序在过去二十年中已经成熟,现有的推理程序要么仅限于简单
边际推断和/或缺乏在多个研究中整合生物医学数据的能力和/或
表格。在很大程度上,由于高维模型中统计推断的挑战,这种稀缺性在很大程度上是由于
特征数量比研究中的受试者数量大。由我们团队广泛的动机
以及来自异质研究的分析多摩学数据的完整专业知识,包括顶级项目
当前的提案旨在应对这些挑战。第一个
该项目的目的为基于高维模型的条件参数开发了一种新颖的推理程序
关于缩小尺寸,哪些设施无缝整合外部生物学信息以及生物医学
跨多个研究和平台的数据。将此方法的应用扩展到非常高的模型
在BBD应用程序中出现的第二个目的是开发一个数据自适应筛选程序,以选择最佳
相关变量的子集。第三个目标开发了高维混合线性的新型推理程序
型号。该方法将高维推理程序的应用领域扩展到具有纵向的研究
dinal数据和重复测量,通常在生物医学应用中产生。第四个目标发展了小说
控制错误发现率(FDR)的数据驱动程序,该程序主持了证据的整合
多个BBD来源,同时最大程度地降低了假阴性率(FNR)以进行最佳发现。在评估时使用Ex-
从顶级项目中进行的次级模拟实验和对多摩斯数据的应用,这是最后的目标实现
提出的方法用于易于使用的开源软件工具,利用R编程语言和
Galaxy Work流量系统的功能,从而为BBD提供了可扩展的平台
方法和工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI SHOJAIE其他文献
ALI SHOJAIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI SHOJAIE', 18)}}的其他基金
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10252023 - 财政年份:2020
- 资助金额:
$ 41.5万 - 项目类别:
Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways
用于发现和分析活跃代谢途径的机器学习工具
- 批准号:
9899255 - 财政年份:2016
- 资助金额:
$ 41.5万 - 项目类别:
Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
- 批准号:
9032704 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
相似国自然基金
采用大直径分体栓钉的装配式钢-UHPC组合梁界面抗剪机理与受力行为研究
- 批准号:52108156
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
黄河流域农户水土保持技术采用行为的干预机制与政策优化研究
- 批准号:72103115
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黄河流域农户水土保持技术采用行为的干预机制与政策优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用大直径分体栓钉的装配式钢-UHPC组合梁界面抗剪机理与受力行为研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Mitigating the Impact of Stigma and Shame as a Barrier to Viral Suppression Among MSM Living with HIV and Substance Use Disorders
减轻耻辱感和羞耻感对感染艾滋病毒和药物滥用的 MSM 的病毒抑制造成的影响
- 批准号:
10683694 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
- 批准号:
10662674 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别: