Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
基本信息
- 批准号:10252023
- 负责人:
- 金额:$ 41.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionBehavioralBig Data MethodsBiologicalBiological AssayBiological MarkersCodeCollectionCommunitiesComputer softwareDataData SourcesDevelopmentDimensionsDiseaseElectronic Health RecordEvaluationFosteringGalaxyGenetic studyGoalsHeartImaging technologyIndividualLinear ModelsMeasurementMeasuresMedical ImagingMethodsModelingMolecularMultiomic DataOutcomePhenotypeProceduresR programming languageResearch PersonnelSample SizeScientistScreening procedureSoftware ToolsStructureSystemTestingTrans-Omics for Precision MedicineUncertaintyWorkbasebig biomedical datacomputational pipelinesdata integrationdesigndiverse dataeffective therapyexperimental studyheterogenous datahigh dimensionalityinterestmachine learning methodmembernovelopen sourcepublic health relevancescreeningsimulationstatistical and machine learningstructured datatooltreatment strategyuser friendly software
项目摘要
Project Summary
This project develops novel statistical inference procedures for biomedical big data (BBD), including data from diverse
omics platforms, various medical imaging technologies and electronic health records. Statistical inference, i.e., assess-
ing uncertainty, statistical significance and confidence, is a key step in computational pipelines that aim to discover new
disease mechanisms and develop effective treatments using BBD. However, the development of statistical inference
procedures for BBD has lagged behind technological advances. In fact, while point estimation and variable selection
procedures for BBD have matured over the past two decades, existing inference procedures are either limited to simple
methods for marginal inference and/or lack the ability to integrate biomedical data across multiple studies and plat-
forms. This paucity is, in large part, due to the challenges of statistical inference in high-dimensional models, where the
number of features is considerably larger than the number of subjects in the study. Motivated by our team's extensive
and complementary expertise in analyzing multi-omics data from heterogenous studies, including the TOPMed project
on which multiple team members currently collaborate, the current proposal aims to address these challenges. The first
aim of the project develops a novel inference procedure for conditional parameters in high-dimensional models based
on dimension reduction, which facilitates seamless integration of external biological information, as well as biomedical
data across multiple studies and platforms. To expand the application of this method to very high-dimensional models
that arise in BBD applications, the second aim develops a data-adaptive screening procedure for selecting an optimal
subset of relevant variables. The third aim develops a novel inference procedure for high-dimensional mixed linear
models. This method expands the application domain of high-dimensional inference procedures to studies with longitu-
dinal data and repeated measures, which arise commonly in biomedical applications. The fourth aim develops a novel
data-driven procedure for controlling the false discovery rate (FDR), which facilitates the integration of evidence from
multiple BBD sources, while minimizing the false negative rate (FNR) for optimal discovery. Upon evaluation using ex-
tensive simulation experiments and application to multi-omics data from the TOPMed project, the last aim implements
the proposed methods into easy-to-use open-source software tools leveraging the R programming language and the
capabilities of the Galaxy workflow system, thus providing an expandable platform for further developments for BBD
methods and tools.
项目概要
该项目为生物医学大数据(BBD)开发新颖的统计推断程序,包括来自不同领域的数据
组学平台、各种医学成像技术和电子健康记录,即评估。
计算不确定性、统计显着性和置信度是旨在发现新的计算管道的关键步骤
然而,统计推断的发展还不够。
事实上,BBD 的程序已经落后于技术进步,而点估计和变量选择。
BBD 程序在过去二十年里已经成熟,现有的推理程序要么仅限于简单的
边际推理方法和/或缺乏跨多个研究和平台整合生物医学数据的能力
这种缺乏在很大程度上是由于高维模型中统计推断的挑战,其中
由于我们团队的广泛研究,特征的数量远远大于研究对象的数量。
以及分析来自异质研究的多组学数据的互补专业知识,包括 TOPMed 项目
目前多个团队成员正在合作,当前的提案旨在解决这些挑战。
该项目的目标是开发一种基于高维模型中条件参数的新颖推理程序
降维,有利于外部生物信息以及生物医学信息的无缝集成
跨多个研究和平台的数据将该方法的应用扩展到非常高维的模型。
BBD 应用中出现的第二个目标是开发一种数据自适应筛选程序,用于选择最佳的
第三个目标是为高维混合线性开发一种新颖的推理程序。
该方法将高维推理过程的应用领域扩展到纵向研究。
第四个目标是开发一种新颖的数据和重复测量。
用于控制错误发现率(FDR)的数据驱动程序,有助于整合来自
多个 BBD 源,最小化假阴性率(FNR)以实现最佳发现。
TOPMed项目的多组学数据的密集模拟实验和应用,最后一个目标实现
将所提出的方法转化为易于使用的开源软件工具,利用 R 编程语言和
Galaxy工作流程系统的功能,从而为BBD的进一步开发提供可扩展的平台
方法和工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI SHOJAIE其他文献
ALI SHOJAIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI SHOJAIE', 18)}}的其他基金
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10701041 - 财政年份:2020
- 资助金额:
$ 41.5万 - 项目类别:
Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways
用于发现和分析活跃代谢途径的机器学习工具
- 批准号:
9899255 - 财政年份:2016
- 资助金额:
$ 41.5万 - 项目类别:
Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
- 批准号:
9032704 - 财政年份:2015
- 资助金额:
$ 41.5万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 41.5万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Mitigating the Impact of Stigma and Shame as a Barrier to Viral Suppression Among MSM Living with HIV and Substance Use Disorders
减轻耻辱感和羞耻感对感染艾滋病毒和药物滥用的 MSM 的病毒抑制造成的影响
- 批准号:
10683694 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别:
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
- 批准号:
10662674 - 财政年份:2023
- 资助金额:
$ 41.5万 - 项目类别: