Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways
用于发现和分析活跃代谢途径的机器学习工具
基本信息
- 批准号:9899255
- 负责人:
- 金额:$ 33.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAnabolismAreaBiochemical PathwayBiochemical ReactionBiologicalBiological AssayCardiovascular DiseasesCell physiologyCellsCharacteristicsCodeCommunitiesComplementComplexComputer softwareComputing MethodologiesDataData AnalysesData Coordinating CenterData SetDepositionDetectionDevelopmentDiabetes MellitusDiseaseEnvironmentEnvironmental Risk FactorEquilibriumFundingGalaxyHomeostasisKnowledgeLabelLanguageLettersLinear ModelsMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMethodologyMethodsNamesNetwork-basedNuclear Magnetic ResonancePathway interactionsPhasePhenotypePlug-inProceduresProcessPrognostic MarkerProteomicsReactionSamplingSignal TransductionSoftware ToolsSystemTechnologyTestingUnited States National Institutes of HealthVisualizationWorkbasebiological systemsbiomarker discoverydata warehousediagnostic biomarkerdiverse dataexperimental studyflexibilityhigh dimensionalityimprovedinsightinterestmachine learning methodmetabolomemetabolomicsnew technologynovelnovel diagnosticsnovel markeropen sourceprogramspublic health relevancerapid growthresponsesmall moleculestatistical and machine learningtargeted treatmenttooltranscriptomics
项目摘要
DESCRIPTION (provided by applicant): This project aims to develop new statistical machine learning methods for metabolomics data from diverse platforms, including targeted and unbiased/global mass spectrometry (MS), labeled MS experiments for measuring metabolic flux and Nuclear Magnetic Resonance (NMR) platforms. Unbiased MS and NMR profiling studies result in identifying a large number of unnamed spectra, which cannot be directly matched to known metabolites and are hence often discarded in downstream analyses. The first aim develops a novel kernel penalized regression method for analysis of data from unbiased profiling studies. It provides a systematic framework for extracting the relevant information from
unnamed spectra through a kernel that highlights the similarities and differences between samples, and in turn boosts the signal from named metabolites. This results in improved power in identification of named metabolites associated with the phenotype of interest, as well as improved prediction accuracy. An extension of this kernel-based framework is also proposed to allow for systematic integration of metabolomics data from diverse profiling studies, e.g. targeted and unbiased MS profiling technologies. The second aim pro- vides a formal inference framework for kernel penalized regression and thus complements the discovery phase of the first aim. The third aim focuses on metabolic pathway enrichment analysis that tests both orchestrated changes in activities of steady state metabolites in a given pathway, as well as aberrations in the mechanisms of metabolic reactions. The fourth aim of the project provides a unified framework for network-based integrative analysis of static (based on mass spectrometry) and dynamic (based on metabolic flux) metabolomics measurements, thus providing an integrated view of the metabolome and the fluxome. Finally, the last aim implements the pro- posed methods in easy-to-use open-source software leveraging the R language, the capabilities of the Cytoscape platform and the Galaxy workflow system, thus providing an expandable platform for further developments in the area of metabolomics. The proposed software tool will also provide a plug-in to the Data Repository and Coordination Center (DRCC) data sets, where all regional metabolomics centers supported by the NIH Common Funds Metabolomics Program deposit curated data.
描述(由申请人提供):该项目旨在为来自不同平台的代谢组学数据开发新的统计机器学习方法,包括有针对性和无偏/全局质谱(MS)、用于测量代谢通量和核磁共振(NMR)的标记MS实验无偏见的 MS 和 NMR 分析研究导致识别大量未命名的光谱,这些光谱无法直接与已知的代谢物匹配,因此经常在下游被丢弃。第一个目标是开发一种新的核惩罚回归方法,用于分析来自无偏分析研究的数据,它提供了一个用于从中提取相关信息的系统框架。
通过核突出显示样品之间的相似性和差异,从而增强来自命名代谢物的信号,这提高了与感兴趣的表型相关的命名代谢物的识别能力,并提高了预测准确性。还提出了这个基于内核的框架,以允许系统地整合来自不同分析研究的代谢组学数据,例如有针对性的和公正的 MS 分析技术。用于核惩罚回归,从而补充第一个目标的发现阶段,重点是代谢途径富集分析,测试给定途径中稳态代谢物活性的精心安排的变化,以及代谢反应机制的畸变。该项目的第四个目标为静态(基于质谱)和动态(基于代谢通量)代谢组学测量的基于网络的综合分析提供一个统一的框架,从而提供一个综合视图。最后,最后一个目标是利用 R 语言、Cytoscape 平台和 Galaxy 工作流程系统的功能,在易于使用的开源软件中实现所提出的方法,从而提供一个可扩展的平台。拟议的软件工具还将为数据存储和协调中心(DRCC)数据集提供插件,其中所有区域代谢组学中心均由 NIH Common 支持。基金代谢组学计划存放精选数据。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Black-box tests for algorithmic stability.
算法稳定性的黑盒测试。
- DOI:10.1093/imaiai/iaad039
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kim,Byol;Barber,RinaFoygel
- 通讯作者:Barber,RinaFoygel
High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models
贝叶斯向量自回归模型中的高维后验一致性
- DOI:10.1080/01621459.2018.1437043
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Ghosh, Satyajit;Khare, Kshitij;Michailidis, George
- 通讯作者:Michailidis, George
Likelihood Inference for Large Scale Stochastic Blockmodels with Covariates based on a Divide-and-Conquer Parallelizable Algorithm with Communication.
基于分而治之的可并行通信算法的具有协变量的大规模随机块模型的似然推断。
- DOI:10.1080/10618600.2018.1554486
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Roy,Sandipan;Atchadé,Yves;Michailidis,George
- 通讯作者:Michailidis,George
The Convex Mixture Distribution: Granger Causality for Categorical Time Series
- DOI:10.1137/20m133097x
- 发表时间:2021-01-01
- 期刊:
- 影响因子:3.6
- 作者:Tank,Alex;Li,Xiudi;Shojaie,Ali
- 通讯作者:Shojaie,Ali
Statistical significance in high-dimensional linear mixed models.
- DOI:10.1145/3412815.3416883
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI SHOJAIE其他文献
ALI SHOJAIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI SHOJAIE', 18)}}的其他基金
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10701041 - 财政年份:2020
- 资助金额:
$ 33.69万 - 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10252023 - 财政年份:2020
- 资助金额:
$ 33.69万 - 项目类别:
Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
- 批准号:
9032704 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The conserved transcription factor UNC-30/PITX1-3 coordinates synaptogenesis and cell identity in C. elegans motor neurons
保守转录因子 UNC-30/PITX1-3 协调线虫运动神经元的突触发生和细胞身份
- 批准号:
10478894 - 财政年份:2021
- 资助金额:
$ 33.69万 - 项目类别:
The conserved transcription factor UNC-30/PITX1-3 coordinates synaptogenesis and cell identity in C. elegans motor neurons
保守转录因子 UNC-30/PITX1-3 协调线虫运动神经元的突触发生和细胞身份
- 批准号:
10314649 - 财政年份:2021
- 资助金额:
$ 33.69万 - 项目类别:
Elucidating the genetic basis of imidazopyrazinone luciferin biosynthesis for the development of improved bioluminescence imaging technologies
阐明咪唑并吡嗪酮荧光素生物合成的遗传基础,以开发改进的生物发光成像技术
- 批准号:
9979650 - 财政年份:2018
- 资助金额:
$ 33.69万 - 项目类别:
Mechanistic studies of thioether crosslink formation in peptides
肽中硫醚交联形成的机理研究
- 批准号:
9169902 - 财政年份:2016
- 资助金额:
$ 33.69万 - 项目类别:
Exploring RNA Folding and Dynamics Using a Polarizable Force Field
使用极化力场探索 RNA 折叠和动力学
- 批准号:
8645182 - 财政年份:2014
- 资助金额:
$ 33.69万 - 项目类别: