Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
基本信息
- 批准号:9032704
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-15 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAreaAtherosclerosisBiologicalBiological MarkersBiologyBiomedical ResearchCardiovascular DiseasesCause of DeathCell physiologyCellsCommunitiesComplementComplexDNA MethylationDataData AnalysesData SetDevelopmentDiabetes MellitusDiseaseDisease OutcomeDyslipidemiasEnvironmental Risk FactorEpigenetic ProcessExogenous FactorsGene ExpressionGene ProteinsGenesGeneticGenetic VariationGenomicsHistonesHypertensionIndividualInformation NetworksJointsKnowledgeLeadMachine LearningMalignant NeoplasmsMapsMeasurementMethodologyMethodsMethylationMolecularMyocardial InfarctionNatureNetwork-basedObesityOutcomePathway AnalysisPathway interactionsPatientsPhenotypePhysiologyPost-Transcriptional RegulationProcessPrognostic MarkerResearchResearch PersonnelRisk FactorsSoftware ToolsSourceStatistical MethodsStrokeStructureSystemTestingTraining Activitybasecardiovascular disorder riskcareercomputerized toolsdesigndiagnostic biomarkerdisease phenotypeepigenetic markergenetic risk factorimprovedlearning networklearning strategymRNA Expressionmembermultiple omicsnew technologynovelnovel diagnosticspublic health relevanceresponsetargeted treatmenttherapeutic targettraining opportunityuser friendly softwarewhole genome
项目摘要
DESCRIPTION (provided by applicant): This project involves the development of new statistical methodologies and computational tools for network-based integrative analysis of epigenetic risk factors of cardiovascular diseases (CVD). While the advent of omics data from new technologies has facilitated the study of epigenetic factors, existing methodologies often do not account for complexities of biological data such as correlations due to interactions of genes/proteins as part of biological pathways and fail to efficiently integrate diverse omics data
sets for instance genetic variation, DNA methylation and gene expression. The methodologies proposed in this project, and the software tools that will be developed to implement them, address these shortcomings, and facilitate further research by the biomedical community to gain a better understanding of the underlying biology of CVD, and to develop new diagnostic biomarkers and potential targets for therapies. The proposed methodologies are motivated by the study of epigenetic data from the Multi-Ethnic Study of Atherosclerosis (MESA), and include (i) a network-based pathway enrichment analysis method that incorporates available knowledge of interactions among genes and proteins while complementing and refining such information (Aim 1A), as well as its extension for analysis of multiple types of omics data (Aim 1B), and (ii) an integrative analysis framework to identify associations among gene expression levels and DNA methylation (Aim 2A) and identify common epigenetic factors of multiple CVD phenotypes through integrated analysis of DNA methylation and mRNA expression data (Aim 2B). We will develop efficient and user-friendly software tools for the proposed methods (Aim 3), which will be made freely available to the public after extensive tests using both simulated data, as well as real data from MESA.
描述(由适用提供):该项目涉及开发新的统计方法和计算工具,用于基于网络的心血管疾病(CVD)的表观遗传风险因素的集成分析。虽然新技术的OMIC数据的冒险已经准备好了表观遗传因素的研究,但现有方法通常不会说明生物学数据的复杂性,例如由于基因/蛋白质的相互作用而导致的相关性,这是生物学途径的一部分,并且无法有效地整合多样化的OMICS数据
例如遗传变异,DNA甲基化和基因表达。该项目中提出的方法以及将开发出来的软件工具来实施它们,解决这些缺点,并促进生物医学界的进一步研究,以更好地了解CVD的基本生物学,并开发新的诊断生物标志物和潜在的疗法。提出的方法是通过研究动脉粥样硬化研究(MESA)的表观遗传数据的动机,包括(i)一种基于网络的途径富集分析方法,该方法结合了基因和蛋白质之间可用的相互作用知识,同时完成和重新填充了此类信息(AIM 1A),以及对多种类型的分析(II)(目标1B)(目标)(目标1B)(目标)(目标1B)(目标)(目标)(目标1B),并且通过对DNA甲基化和mRNA表达数据的综合分析(AIM 2B),基因表达水平和DNA甲基化(AIM 2A)之间的关联(AIM 2A)并鉴定了多种CVD表型的常见表观遗传因子。我们将为所提出的方法开发有效和用户友好的软件工具(AIM 3),使用模拟数据以及MESA的真实数据,将在广泛的测试之后免费向公众提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI SHOJAIE其他文献
ALI SHOJAIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI SHOJAIE', 18)}}的其他基金
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10701041 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Novel Statistical Inference for Biomedical Big Data
生物医学大数据的新颖统计推断
- 批准号:
10252023 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Machine Learning Tools for Discovery and Analysis of Active Metabolic Pathways
用于发现和分析活跃代谢途径的机器学习工具
- 批准号:
9899255 - 财政年份:2016
- 资助金额:
$ 14.28万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别: