Real time colon histopathology by infrared spectroscopic imaging

通过红外光谱成像进行实时结肠组织病理学

基本信息

项目摘要

Abstract Colorectal cancer (CRC) is one of the leading causes of death in the US. Active screening and early intervention in risky cancers can lead to good outcomes; however, a bottleneck in rapidly delivering appropriate patient care is the long time period for histologic assessment and lack of precision in predicting disease severity. Morphological assessments prevalent in histology are useful but resource intensive and not predictive enough. Molecular techniques to complement traditional pathology are emerging but often require much more effort and time, without being especially compatible with histologic assessments. Here, we seek to develop a technology that measures the chemical content of tissues, does not require reagents, is entirely compatible with clinical workflows and leverages modern artificial intelligence (AI) techniques to provide real-time histologic assessment. The foundation of our approach is a new design for an infrared spectroscopic imaging system that is faster than any reported, offers a higher spatial and spectral quality and uses a solid immersion lens with a fixed focus at the sealed surface of the lens to enable use by a minimally trained person. In conjunction with the instrument, we develop AI algorithms that measure the chemical content of tissue and use it to provide (a) conventional pathology images without the use of dyes (“stainless staining”), and (b) histologic assessment based on molecular data, which can provide complementary composition, disease and risk of lethal cancer images akin to conventional pathology. The instrument will be usable by laboratory technicians, without the need to prepare thin sections from excised tissue and will provide information in minutes. Using preliminary data from human patients on over 850 tissue microarray (TMA) samples from 8 TMAs and 30 surgical resections, we validate the use of technology in providing complete histologic and disease grade assessment. Statistical methods will be used to assess the results rigorously and quantitative milestones guide the entire approach. We then translate the results to fresh tissue chunks, providing histology minutes after tissue is extracted from the body. Finally, we use the detailed tumor and microenvironment information available from the tissue to segment patients into a “high risk” and “low risk” group. The availability of rapid histologic assessment can help prevent delays in providing care, provide intraoperative assessment, and add more information to morphologic assessments following screening, enabling a wide use in CRC and other cancer pathologies.
抽象的 结直肠癌(CRC)是美国主动筛查的主要原因之一。 在危险中,癌症可以带来良好的结果; 是组织学评估的长时间,并且在预测疾病严重程度方面缺乏精确度。 在组织学中普遍存在的形态评估是我们的,但资源密集型的起诉足够足够。 汇编传统病理学的分子技术正在出现,但是却需要更多更多的努力和 时间,不尤其与组织学评估兼容。 测量组织的化学含量(不需要试剂)与临床完全兼容 工作流程和利用现代人工智能(AI)技术提供实时组织学评估。 我们方法的基础是针对延展性延展性型光谱成像系统的新设计。 任何报告,提供更高的空间和光谱质量 镜头的密封表面可以与训练有素的人一起使用。 我们开发了AI算法来测量组织的化学含量并使用它来提供(a)常规 病理图像不使用染料(“不锈钢染色”)和(b)基于基于 分子数据,可以提供类似于莱特剂图像的组成,疾病和风险 传统的病理学。 切除组织的切片,并将在几分钟内提供信息。 在超过850个来自8个TMA和30个手术分辨率的组织微阵列(TMA)样品中,我们验证了使用的使用 提供完整的组织学和疾病评估的技术。 评估结果严格和定量里程碑,我们将结果盗窃。 到新鲜的组织块,从人体提取组织后几分钟提供组织学。 详细的肿瘤和微环境信息从组织到将患者分割为“高风险” 和“低风险”组。 提供术中评估,并在筛选后将更多信息添加到形态评估中, 可以广泛用于CRC和其他癌症病理。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Colon Cancer Grading Using Infrared Spectroscopic Imaging-Based Deep Learning.
  • DOI:
    10.1177/00037028221076170
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
  • 通讯作者:
Phasor Representation Approach for Rapid Exploratory Analysis of Large Infrared Spectroscopic Imaging Data Sets.
用于快速探索性分析大型红外光谱成像数据集的相量表示方法。
  • DOI:
    10.1021/acs.analchem.3c01539
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Mukherjee,SudiptaS;Bhargava,Rohit
  • 通讯作者:
    Bhargava,Rohit
A generative adversarial approach to facilitate archival-quality histopathologic diagnoses from frozen tissue sections.
  • DOI:
    10.1038/s41374-021-00718-y
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Falahkheirkhah, Kianoush;Guo, Tao;Hwang, Michael;Tamboli, Pheroze;Wood, Christopher G.;Karam, Jose A.;Sircar, Kanishka;Bhargava, Rohit
  • 通讯作者:
    Bhargava, Rohit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohit Bhargava其他文献

Rohit Bhargava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rohit Bhargava', 18)}}的其他基金

Quantitative phase imaging andcomputational specificity (Popescu)
定量相位成像和计算特异性(Popescu)
  • 批准号:
    10705170
  • 财政年份:
    2022
  • 资助金额:
    $ 46.61万
  • 项目类别:
Spectroscopy Assisted Laser Microdissection
光谱辅助激光显微切割
  • 批准号:
    10284780
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
  • 批准号:
    10426352
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Instrument development for vibrational circular dichroism imaging
振动圆二色性成像仪器的开发
  • 批准号:
    10650769
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Instrument development for vibrational circular dichroism imaging
振动圆二色性成像仪器的开发
  • 批准号:
    10437817
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
  • 批准号:
    10318008
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Spectroscopy Assisted Laser Microdissection
光谱辅助激光显微切割
  • 批准号:
    10474463
  • 财政年份:
    2021
  • 资助金额:
    $ 46.61万
  • 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
  • 批准号:
    10207105
  • 财政年份:
    2016
  • 资助金额:
    $ 46.61万
  • 项目类别:
Tissue microenvironment (TiMe) training program
组织微环境(TiMe)培训计划
  • 批准号:
    9458180
  • 财政年份:
    2016
  • 资助金额:
    $ 46.61万
  • 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
  • 批准号:
    10649737
  • 财政年份:
    2016
  • 资助金额:
    $ 46.61万
  • 项目类别:

相似国自然基金

基于物理约束人工智能的缺资料流域山洪模拟方法研究
  • 批准号:
    42371086
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
  • 批准号:
    82302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人工智能的微结构光纤研究
  • 批准号:
    62375013
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
  • 批准号:
    10644648
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
  • 批准号:
    10754029
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
  • 批准号:
    10905154
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了