ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
基本信息
- 批准号:10754029
- 负责人:
- 金额:$ 70.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionArtificial IntelligenceBenchmarkingCOVID-19 pandemicCOVID-19 patientClinicalClinical ResearchClinical TrialsCollaborationsDataData SetDatabasesDetectionEligibility DeterminationEngineeringEthicsEvaluationEvidence Based MedicineExpert SystemsFAIR principlesFaceGenerationsGoalsGrainHealthHealthcareHumanIndividualInformaticsInformation RetrievalIntelligenceInterventionKnowledgeLinkLiteratureMeasuresMechanical ventilationMeta-AnalysisMetadataMethodsMisinformationModelingNatural Language ProcessingNatural Language Processing pipelineOutcomePatientsPeer ReviewPersonsPolicy MakerPopulationProbabilityPubMedPublic HealthPublicationsPublishingQualifyingRandomized, Controlled TrialsRegistriesReportingResearchResearch DesignResearch PersonnelResourcesRetrievalSARS-CoV-2 infectionSample SizeScienceSourceSymbiosisSystemTechnologyTestingTextTrustUpdateWorkaugmented intelligenceclinical trial protocolclinically relevantcognitive taskcohortdata repositorydata reusedata sharingdata translatordeep learningdesigndrug repurposingevidence baseexperiencefitnessgraph knowledge basehuman studyimprovedinteroperabilityknowledge baseknowledge graphmortality risknovelsevere COVID-19student mentoringstudy characteristicssystematic reviewtask analysisuser centered designwasting
项目摘要
SUMMARY
Evidence-based medicine faces increasingly mounting challenges. With the explosively growing scientific
literature, it will be harder than ever to identify the best evidence available, especially given the large volume of
non-traditional and emerging sources of evidence: e.g., evidence derived from trial registries and data
repositories; observational datasets; publications without peer review; and scientific blogging. Individual studies
using conventional methods for evidence generation, especially randomized controlled trials, may be significantly
flawed in their planning, conduct, analysis, or reporting, resulting in ethical violations, wasted scientific resources,
and dissemination of misinformation with subsequent health harm. Furthermore, a new randomized controlled
trial should be initiated or interpreted in the context of the existing evidence. However, clinical evidence
extraction, appraisal, and aggregation remain laborious human tasks given its free-text format. To support
evidence-based research so that new research hypothesis selection and testing can be well-grounded on the
existing scientific literature and existing evidence can be easily accessible and computable to researchers,
patients, or clinicians, we will develop novel, scalable, and generalizable methods for clinical evidence extraction
and appraisal so that we can help the public identify reliable evidence easily. We will contribute computable
evidence representations and accompanying natural language processing pipelines, achieving symbiosis
between the two to support core tasks for evidence-based medicine, such as faceted evidence retrieval (e.g.,
“retrieve all the randomized controlled trials publications about the efficacy of HCQ on severe COVID-19 patients,
with each study having a sample size over 200”), extraction and representation of clinical findings (e.g., “HCQ
for people infected with COVID-19 has little or no effect on the risk of death, and probably no effect on
progression to mechanical ventilation”), and evidence quality ranking and biases detection.
Therefore, we propose four specific aims:
Aim 1. — Represent and extract Population, Intervention, Comparison, and Outcome (PICO) information.
Aim 2. — Represent and extract clinical findings and their metadata relevant for evidence quality ranking
and study biases detection.
Aim 3. — Develop and validate an extensible living clinical evidence knowledge graph based on the FAIR
principles.
Aim 4. — Develop and validate an Augmented Intelligence (AI) system for evidence appraisal.
INNOVATION There is no scalable and generalizable informatics solution for literature-based, fine-grained
clinical evidence extraction and representation, evidence quality ranking, evidence biases detection, and user-
augmented clinical evidence aggregation and appraisal. ClinEX will be the first solution to achieve these goals.
概括
循证医学面临越来越多的挑战。随着爆炸性发展的科学
文学,确定可用的最佳证据会比以往任何时候都更难
非传统和新兴证据来源:例如,源自试验注册和数据的证据
存储库;观察数据集;没有同行评审的出版物;和科学博客。个人研究
使用常规方法进行证据,尤其是随机对照试验,可能是显着的
他们的计划,行为,分析或报告有缺陷,导致违反道德的行为,浪费了科学资源,
以及随后的健康危害传播未经信息。此外,新的随机控制
试验应在现有证据的背景下开始或解释。但是,临床证据
鉴于其自由文本格式,提取,评估和聚合仍然是实验室人类任务。支持
基于证据的研究,因此可以在
现有的科学文献和现有证据可以轻松地访问和计算。
患者或临床医生,我们将开发出新颖,可扩展和可推广的临床证据提取方法
和评估,以便我们可以帮助公众轻松识别可靠的证据。我们将贡献可计算的
证据表示和参与自然语言处理管道,实现符号
在两者之间支持基于循证医学的核心任务,例如面对证据检索(例如,
“检索所有关于HCQ对严重COVID-19患者的有效性的随机对照试验出版物,
每项研究的样本量超过200英寸),提取和临床发现的表示(例如,“ HCQ)
对于感染Covid-19的人,对死亡风险几乎没有影响,可能不会影响
进展到机械通气”),以及证据质量排名和偏见检测。
因此,我们提出了四个具体目标:
目标1。 - 代表和提取种群,干预,比较和结果(PICO)信息。
目标2。 - 代表并提取与证据质量排名有关的临床发现及其元数据
并研究偏见检测。
目标3。 - 基于博览会发展并验证可扩展的生活临床证据知识图
原则。
目标4。 - 开发并验证增强情报(AI)系统以进行证据评估。
创新没有针对基于文学的,细粒度的可扩展性和可推广的信息解决方案
临床证据提取和表示,证据质量排名,证据偏见检测以及用户 -
增强临床证据汇总和评估。 Clinex将是实现这些目标的第一个解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 70.88万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 70.88万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10839649 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10279554 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10490346 - 财政年份:2021
- 资助金额:
$ 70.88万 - 项目类别:
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于人工智能的肥厚型心肌病超声影像精准评估方法研究
- 批准号:82302226
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于可解释人工智能模型的内镜下结直肠癌浸润深度的研究
- 批准号:82303949
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能构建心脏功能亚段实现胸部肿瘤个体化放疗新策略
- 批准号:12305394
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于城市形态双重表征互动学习的人工智能辅助城市设计技术
- 批准号:52308068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别: