Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
基本信息
- 批准号:10611212
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-22 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdoptionAgeAlgorithmsArtificial IntelligenceArtificial Intelligence platformBenchmarkingBiopsyCancer DetectionCancer EtiologyCancer PatientCancerousCessation of lifeClassificationClinicClinicalCommunity HospitalsDangerousnessDataData ReportingData SetDemographyDetectionDiagnosisEffectivenessEvaluationExpert SystemsFamily Cancer HistoryGenitourinary systemGoalsGuidelinesHistologyHybridsImageIncidenceInformation SystemsIntelligenceInternationalJointsLaboratoriesLesionLocalesMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMedicalMetadataMinority GroupsMorbidity - disease rateMorphologic artifactsNatureNoiseOperative Surgical ProceduresOutcomePatientsPhysiciansPopulation HeterogeneityPredictive ValuePrevention strategyProstateRaceRadiology SpecialtyReaderRecommendationRectumReportingReproducibilityReproducibility of ResultsResearchRiskRoleScanningScreening for Prostate CancerSourceStandardizationSystemTrainingTrustUncertaintyUnited States National Institutes of HealthUniversitiesVariantVisualartificial intelligence algorithmartificial intelligence methodcancer classificationcancer diagnosiscapsuleclassification algorithmclinical imagingclinically significantcohortdata acquisitiondata curationdesigndigitalefficacy validationexperiencehigh riskimprovedinnovationmalemenmortalitymulti-task learningneural network algorithmnovelprospectiveprostate biopsyradiological imagingradiologistrectalrisk stratificationserum PSAtooltreatment strategytrustworthiness
项目摘要
Project Summary/Abstract
Prostate Cancer (PCa) is among the most common cancers in men worldwide, with an estimated 1.6M cases and 366K
deaths annually [1]. In the US, 11% of men are diagnosed with PCa over their lifetime, with incidence generally rising with
age [2]. The Prostate Imaging Reporting and Data System (PI-RADS) has become a standard tool for diagnosing PCa using
multi-parametric MR images (mp-MRI). PI-RADS aims to standardize the way to classify the cancer grades. However, PI-RADS does not use clinical and demographic patient information, and MR images are assessed qualitatively or at most
semi-quantitatively causing under-detection of dangerous cancer and over-detection of insignificant cancer.
This proposal is to develop artificial intelligence (AI) algorithms to improve the detection accuracy by reducing
assessment variations and providing trustable predictions. Our algorithms will use diverse population data and eventually a
far better evaluation system. This new system will input mp-MRI, clinical (digital rectal exam, PCa family history),
demographic (age, race), and laboratory (serum PSA) data to provide risk scores for intraprostatic lesions, and
improve patient management for diverse populations. The smart system we will develop is called Hybrid Intelligence
and Trustable (HIT)-PIRADS and specific aims of this proposal are three-fold:
First, we will develop a new pre-processing framework for enhancing mp-MRI data and minimizing data biases. MRI
quality varies significantly, which makes standardization very difficult. To normalize MRI, we will correct artifacts, remove
inhomogeneity and noise as the pre-processing step. Next, dataset bias, such as over/under-representation of race will be
dealt with as biases cause skewed and inaccurate outcomes. We will examine imbalances and quantify uncertainties in data
representation to develop a visual bias-estimation tool (ViBeT) to identify potential biases in the data. Second, we will
develop joint segmentation, detection, and classification algorithms for PCa using mp-MRI. Quantification of prostate and
PCa is essential for lesion identification, risk stratification, biopsy guidance, and lesion targeting for surgery/focal therapies.
We will use our innovative capsule-based neural networks algorithms and extend its strength to analyze mp-MRI and nonimaging data. This step will improve generalization of our algorithms to all risk groups, races, and ages. There will be also
an explanation module in the HIT-PIRADAS: we will embed both radiographical interpretations and visual explanations
into the baseline HIT-PIRADS. Third, we will evaluate and validate the efficacy of the HIT-PIRADS both retrospectively
and prospectively. We will prove the effectiveness of HIT-PIRADS in over 7000 patients’ data (3846 retrospective, 3200
prospective). We will rigorously evaluate sources of variations and standardize HIT-PIRADS for adoption in the clinics.
The outcome of this project will be a first-of-its-kind and easy-to-use recommendation system for PCa detection and
patient management (HIT-PIRADS) to provide more accurate, unbiased, reproducible results to reduce PCa related
morbidity and mortality. In the long term, we expect HIT-PIRADS to be widely adopted in clinics and trigger other treatment
& prevention strategies to be developed based on HIT-PIRADS.
项目概要/摘要
前列腺癌 (PCa) 是全球男性最常见的癌症之一,估计有 160 万例病例和 36.6 万例
在美国,每年有 11% 的男性在一生中被诊断出患有前列腺癌,且发病率通常随着年龄的增长而上升。
前列腺影像报告和数据系统 (PI-RADS) 已成为诊断 PCa 的标准工具。
多参数 MR 图像 (mp-MRI) 旨在标准化癌症分级的分类方式,但是,PI-RADS 不使用临床和人口统计患者信息,并且 MR 图像最多进行定性评估。
半定量导致危险癌症的检测不足和微不足道的癌症的过度检测。
该提案旨在开发人工智能(AI)算法,通过减少
我们的算法将使用不同的人口数据并最终提供可靠的预测。
这个新系统将输入 mp-MRI、临床(直肠指检、PCa 家族史)、
人口统计(年龄、种族)和实验室(血清 PSA)数据,以提供前列腺内病变的风险评分,以及
我们将开发的智能系统称为混合智能,改善对不同人群的患者管理。
和可信(HIT)-PIRADS,该提案的具体目标有三个方面:
首先,我们将开发一个新的预处理框架,用于增强 mp-MRI 数据并最大程度地减少 MRI 数据偏差。
质量差异很大,这使得标准化非常困难,为了使 MRI 正常化,我们将纠正伪影、消除伪影。
接下来,数据集偏差(例如种族的过度/代表性不足)将被作为预处理步骤。
当偏见导致偏差和不准确的结果时,我们将检查不平衡情况并量化数据的不确定性。
其次,我们将开发视觉偏差估计工具(ViBeT)来识别数据中的潜在偏差。
使用 mp-MRI 量化前列腺癌和前列腺癌,开发联合分割、检测和分类算法。
PCa 对于病变识别、风险分层、活检指导和手术/局部治疗的病变靶向至关重要。
我们将使用我们创新的基于胶囊的神经网络算法,并扩展其分析 mp-MRI 和非成像数据的能力,这一步将提高我们的算法对所有风险群体、种族和年龄的泛化能力。
HIT-PIRADAS 中的解释模块:我们将嵌入射线照相解释和视觉解释
第三,我们将回顾性地评估和验证 HIT-PIRADS 的有效性。
我们将在超过 7000 名患者的数据(3846 名回顾性患者、3200 名患者)中前瞻性地证明 HIT-PIRADS 的有效性。
我们将严格评估变异来源并对 HIT-PIRADS 进行标准化以供临床采用。
该项目的成果将是首创且易于使用的 PCa 检测和推荐系统
患者管理 (HIT-PIRADS) 提供更准确、公正、可重复的结果,以减少 PCa 相关
从长远来看,我们预计 HIT-PIRADS 将在临床中广泛采用并引发其他治疗方法。
基于HIT-PIRADS制定的预防策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Bagci其他文献
Ulas Bagci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Bagci', 18)}}的其他基金
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10611468 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10391173 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10640048 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10339620 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10397701 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10689657 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
ACTFAST: Urban and Rural Trauma Centers RE-AIM at Firearm Injury Prevention
ACTFAST:城乡创伤中心重新瞄准枪支伤害预防
- 批准号:
10812044 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别: