Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
基本信息
- 批准号:10611212
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-22 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdoptionAgeAlgorithmsArtificial IntelligenceArtificial Intelligence platformBenchmarkingBiopsyCancer DetectionCancer EtiologyCancer PatientCancerousCessation of lifeClassificationClinicClinicalCommunity HospitalsDangerousnessDataData ReportingData SetDemographyDetectionDiagnosisEffectivenessEvaluationExpert SystemsFamily Cancer HistoryGenitourinary systemGoalsGuidelinesHistologyHybridsImageIncidenceInformation SystemsIntelligenceInternationalJointsLaboratoriesLesionLocalesMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMedicalMetadataMinority GroupsMorbidity - disease rateMorphologic artifactsNatureNoiseOperative Surgical ProceduresOutcomePatientsPhysiciansPopulation HeterogeneityPredictive ValuePrevention strategyProstateRaceRadiology SpecialtyReaderRecommendationRectumReportingReproducibilityReproducibility of ResultsResearchRiskRoleScanningScreening for Prostate CancerSourceStandardizationSystemTrainingTrustUncertaintyUnited States National Institutes of HealthUniversitiesVariantVisualartificial intelligence algorithmartificial intelligence methodcancer classificationcancer diagnosiscapsuleclassification algorithmclinical imagingclinically significantcohortdata acquisitiondata curationdesigndigitalefficacy validationexperiencehigh riskimprovedinnovationmalemenmortalitymulti-task learningneural network algorithmnovelprospectiveprostate biopsyradiological imagingradiologistrectalrisk stratificationserum PSAtooltreatment strategytrustworthiness
项目摘要
Project Summary/Abstract
Prostate Cancer (PCa) is among the most common cancers in men worldwide, with an estimated 1.6M cases and 366K
deaths annually [1]. In the US, 11% of men are diagnosed with PCa over their lifetime, with incidence generally rising with
age [2]. The Prostate Imaging Reporting and Data System (PI-RADS) has become a standard tool for diagnosing PCa using
multi-parametric MR images (mp-MRI). PI-RADS aims to standardize the way to classify the cancer grades. However, PI-RADS does not use clinical and demographic patient information, and MR images are assessed qualitatively or at most
semi-quantitatively causing under-detection of dangerous cancer and over-detection of insignificant cancer.
This proposal is to develop artificial intelligence (AI) algorithms to improve the detection accuracy by reducing
assessment variations and providing trustable predictions. Our algorithms will use diverse population data and eventually a
far better evaluation system. This new system will input mp-MRI, clinical (digital rectal exam, PCa family history),
demographic (age, race), and laboratory (serum PSA) data to provide risk scores for intraprostatic lesions, and
improve patient management for diverse populations. The smart system we will develop is called Hybrid Intelligence
and Trustable (HIT)-PIRADS and specific aims of this proposal are three-fold:
First, we will develop a new pre-processing framework for enhancing mp-MRI data and minimizing data biases. MRI
quality varies significantly, which makes standardization very difficult. To normalize MRI, we will correct artifacts, remove
inhomogeneity and noise as the pre-processing step. Next, dataset bias, such as over/under-representation of race will be
dealt with as biases cause skewed and inaccurate outcomes. We will examine imbalances and quantify uncertainties in data
representation to develop a visual bias-estimation tool (ViBeT) to identify potential biases in the data. Second, we will
develop joint segmentation, detection, and classification algorithms for PCa using mp-MRI. Quantification of prostate and
PCa is essential for lesion identification, risk stratification, biopsy guidance, and lesion targeting for surgery/focal therapies.
We will use our innovative capsule-based neural networks algorithms and extend its strength to analyze mp-MRI and nonimaging data. This step will improve generalization of our algorithms to all risk groups, races, and ages. There will be also
an explanation module in the HIT-PIRADAS: we will embed both radiographical interpretations and visual explanations
into the baseline HIT-PIRADS. Third, we will evaluate and validate the efficacy of the HIT-PIRADS both retrospectively
and prospectively. We will prove the effectiveness of HIT-PIRADS in over 7000 patients’ data (3846 retrospective, 3200
prospective). We will rigorously evaluate sources of variations and standardize HIT-PIRADS for adoption in the clinics.
The outcome of this project will be a first-of-its-kind and easy-to-use recommendation system for PCa detection and
patient management (HIT-PIRADS) to provide more accurate, unbiased, reproducible results to reduce PCa related
morbidity and mortality. In the long term, we expect HIT-PIRADS to be widely adopted in clinics and trigger other treatment
& prevention strategies to be developed based on HIT-PIRADS.
项目摘要/摘要
前列腺癌(PCA)是全球男性最常见的癌症之一,估计有160万例和366K
每年死亡[1]。在美国,有11%的男性在一生中被诊断出患有PCA,事件通常会增加
年龄[2]。前列腺成像报告和数据系统(PI-RADS)已成为使用PCA的标准工具
多参数MR图像(MP-MRI)。 Pi-Rads旨在标准化对癌症等级进行分类的方式。但是,Pi-Rads不使用临床和人口统计患者信息,并且MR图像被定性评估或最多评估
半定量性导致危险癌症的检测不足和无关紧要的癌症的过度检测。
该建议是开发人工智能(AI)算法以通过降低来提高检测准确性
评估变化并提供可信赖的预测。我们的算法将使用潜水员人口数据,并最终使用
更好的评估系统。这个新系统将输入MP-MRI,临床(数字直肠考试,PCA家族史),
人口统计学(年龄,种族)和实验室(血清PSA)数据可为肉体内病变提供风险评分,并且
改善潜水员人群的患者管理。我们将开发的智能系统称为混合智能
以及可信赖的(命中) - Priprads和该提案的具体目的是三个方面:
首先,我们将开发一个新的预处理框架,以增强MP-MRI数据并最大程度地减少数据偏见。 MRI
质量差异很大,这使标准化非常困难。为了使MRI归一化,我们将纠正工件,删除
不均匀性和噪声作为预处理步骤。接下来,数据集偏见,例如种族的超额代表性不足
处理偏见会导致偏斜和不准确的结果。我们将检查数据中的不平衡并量化不确定性
为开发视觉偏见估计工具(vibet)的表示形式,以识别数据中的潜在偏见。第二,我们会的
使用MP-MRI的PCA开发关节分割,检测和分类算法。量化前列腺和
PCA对于病变识别,风险分层,活检指导和针对手术/局灶性疗法的病变靶向至关重要。
我们将使用基于创新胶囊的中性网络算法并扩展其强度以分析MP-MRI和非成像数据。此步骤将改善我们对所有风险群体,种族和年龄段的算法的概括。也会有
命中式PIRADAS中的一个解释模块:我们将嵌入射线图解释和视觉解释
进入基线命中率。第三,我们将回顾性地评估和验证命中率的效率
并前瞻性。我们将证明在7000多名患者数据中命中率的有效性(3846回顾性,3200
预期)。我们将严格评估变化的来源,并标准化命中率,以在诊所采用。
该项目的结果将是用于PCA检测和易于使用的推荐系统的首要方式
患者管理(HIT-PIRADS)可提供更准确,无偏,可重现的结果,以减少与PCA相关的
发病率和死亡率。从长远来看,我们预计命中率将在诊所中广泛采用,并触发其他治疗
&预防策略将根据命中率开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Bagci其他文献
Ulas Bagci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Bagci', 18)}}的其他基金
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10611468 - 财政年份:2022
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10391173 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10640048 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
- 批准号:
10339620 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10397701 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
- 批准号:
10689657 - 财政年份:2020
- 资助金额:
$ 37.69万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
ACTFAST: Urban and Rural Trauma Centers RE-AIM at Firearm Injury Prevention
ACTFAST:城乡创伤中心重新瞄准枪支伤害预防
- 批准号:
10812044 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别: