Instrument development for vibrational circular dichroism imaging

振动圆二色性成像仪器的开发

基本信息

项目摘要

Abstract Molecular chirality is at the heart of many chemical processes that determine life and drives significant research in development and disease. All life has chiral asymmetry with naturally occurring molecules and long-range assemblies being of distinct handedness. Many exogenous molecules, for example those useful as drugs, also have a distinct enantiomeric dependence for their efficacy in benefiting human health. Thus, measurement of molecular chirality is of critical importance across the medical sciences. Vibrational Circular Dichroism (VCD) spectroscopy has emerged as a powerful platform for quantifying chirality and molecular structure. However, imaging has not been demonstrated due to technological challenges. VCD measurements are largely of homogeneous materials, neat or in solution and probed with sensitive Fourier transform infrared (FT-IR) spectrometers. Microscopy would require ~105 reduction of the typical sensing volume and increase in speed that would make imaging feasible. Instead of utilizing FT-IR spectroscopy, we built a custom quantum cascade laser (QCL) microscope to demonstrate feasibility of a point scanning VCD instrument capable of acquiring spectra rapidly across all fingerprint region wavelengths in both transflection and transmission configurations. Moreover, for the first time, we also demonstrate the VCD imaging performance of our instrument for site-specific chirality mapping of biological tissue samples. However, the feasibility data also point to several technological and conceptual challenges that this project seeks to address in developing a practical prototype. The prototype to be developed here, termed vibrational circular dichroism imaging microscope or VIM, aims to record chirality from microscopically heterogeneous biomedical samples. We propose a design for VIM using a laser scanning approach to minimize artifacts and maximize signal. Starting from a de novo design, we will use commercial and custom optics, custom electronics for control and data management, and in-house software to develop the prototype. Next, we model the VCD image formation process and develop the analytical methods for VIM. The theoretical model developed here builds on our models of IR microscopy and will guide prototype development while ultimately provide greater accuracy, precision and assurance to data recorded. Finally, we validate the performance and broad utility of VIM using well-characterized samples. Together, the work will develop new VCD imaging technology that opens capability to measure and research a wide variety of biological problems.
抽象的 分子手性是许多决定生命并推动重大研究的化学过程的核心 在发育和疾病方面。所有生命都具有天然存在的分子和长程手性不对称性 组件具有明显的偏手性。许多外源分子,例如那些用作药物的分子,也 其有益于人类健康的功效具有明显的对映体依赖性。因此,测量 分子手性在整个医学科学中至关重要。振动圆二色性 (VCD) 光谱学已成为量化手性和分子结构的强大平台。然而, 由于技术挑战,成像尚未得到证实。 VCD 测量主要是 纯质或溶液中的均质材料,并用灵敏的傅里叶变换红外 (FT-IR) 进行探测 光谱仪。显微镜需要将典型传感体积减少约 105 倍并提高速度 这将使成像变得可行。我们没有使用 FT-IR 光谱,而是构建了定制的量子级联 激光 (QCL) 显微镜展示了能够采集数据的点扫描 VCD 仪器的可行性 在半透反射和透射配置中,光谱可快速跨越所有指纹区域波长。 此外,我们还首次展示了我们的仪器针对特定地点的VCD成像性能 生物组织样本的手性图谱。然而,可行性数据也指出了一些技术 以及该项目在开发实用原型时寻求解决的概念挑战。原型机 这里开发的称为振动圆二色性成像显微镜或 VIM,旨在记录手性 来自微观异质生物医学样本。我们提出了一种使用激光扫描的 VIM 设计 最小化伪影并最大化信号的方法。从头开始设计,我们将使用商业和 定制光学器件、用于控制和数据管理的定制电子器件以及用于开发的内部软件 原型。接下来,我们对 VCD 图像形成过程进行建模并开发 VIM 的分析方法。这 这里开发的理论模型建立在我们的红外显微镜模型的基础上,并将指导原型开发 同时最终为记录的数据提供更高的准确性、精确度和保证。最后,我们验证 使用特征良好的样本来展示 VIM 的性能和广泛实用性。共同努力,这项工作将发展出新的 VCD 成像技术开启了测量和研究各种生物问题的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohit Bhargava其他文献

Rohit Bhargava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rohit Bhargava', 18)}}的其他基金

Quantitative phase imaging andcomputational specificity (Popescu)
定量相位成像和计算特异性(Popescu)
  • 批准号:
    10705170
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
Spectroscopy Assisted Laser Microdissection
光谱辅助激光显微切割
  • 批准号:
    10284780
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
  • 批准号:
    10426352
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
  • 批准号:
    10661561
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Instrument development for vibrational circular dichroism imaging
振动圆二色性成像仪器的开发
  • 批准号:
    10437817
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
  • 批准号:
    10318008
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Spectroscopy Assisted Laser Microdissection
光谱辅助激光显微切割
  • 批准号:
    10474463
  • 财政年份:
    2021
  • 资助金额:
    $ 33.27万
  • 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
  • 批准号:
    10207105
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:
Tissue microenvironment (TiMe) training program
组织微环境(TiMe)培训计划
  • 批准号:
    9458180
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
  • 批准号:
    10649737
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
  • 批准号:
    12361074
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
  • 批准号:
    10659007
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
  • 批准号:
    10718346
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
  • 批准号:
    10597840
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了