Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging

基于混合模型和数据驱动的高分辨率断层成像框架

基本信息

项目摘要

ABSTRACT The ultimate goal of structural biology is to visualize biomolecules in action in their native environment and to establish their structure-function relationship. Cellular cryo-electron and X-ray tomography have emerged as powerful techniques for imaging complex biological samples such as intact cells, organelles, macromolecular machines, and for quantifying the internal organization of biological objects in their native states in situ at resolutions ranging from a few microns to tens of nanometers with X-rays to tens of angstroms with electrons. However, compared to the mature techniques of X-ray crystallography and single-particle cryo-electron microscopy, cellular tomography is yet to reach its potential due to a severe degradation in the resolution of reconstructions because of the effects of mechanical misalignment and non-rigid sample deformation due to radiation damage, missing-wedge artifacts, low signal-noise ratio in a crowded environment, and unresolved conformational heterogeneity. To address these issues, we propose to leverage our new approach for automated joint 3D alignment and regularized reconstruction that combines advances in iterative projection methods and convex optimization to achieve better than state-of-the-art reconstruction resolution from severely misaligned data. Infusing our framework with new advances in mathematical modeling and machine learning provides a clear path to a host of new model-based and data-driven algorithms that could address current challenges and bottlenecks in the analysis of cellular tomography data. In particular we propose to (1) develop techniques for improved tilt-series alignment that account for rigid-body motion of the sample and recover the anisotropic effects of radiation-induced warping by using optical flow alignment; (2) develop a decoder that leverages the full frequency information contained in randomly oriented macromolecules in the cell volume to constrain the effects of the missing-wedge; and (3) improve the resolution of subtomograms extracted from the refined volume by developing a volume-encoder--deformation-decoder deep neural network to model conformational heterogeneity. By developing new data-driven methods that constrain the missing-wedge information and treat shape variability as a continuum of non-rigid deformations rather than discrete clusters, our algorithmic framework will provide significant improvements in the resolution and quality of reconstructions over currently existing methods for data analysis that neglect these effects. As the structural biology community is increasingly focusing on cellular tomography, there is a growing need for easy to use, automated software amenable to both experienced and novice users. (4) To this end, algorithms resulting from this proposal will be turned into GPU- enabled open-source user-friendly software to accelerate the analysis of the growing pool of imaging data. Ultimately, our algorithmic framework will be capable of yielding high-resolution structures from noisy, incomplete and complex data, thereby enhancing the predictive power of cellular tomography to answer important biological questions.
抽象的 结构生物学的最终目标是可视化生物分子在其天然环境中的作用,并 建立它们的结构-功能关系。细胞冷冻电子和 X 射线断层扫描已成为 用于对复杂生物样品(例如完整细胞、细胞器、大分子)进行成像的强大技术 机器,并用于量化生物物体在其天然状态下的内部组织 分辨率范围从 X 射线的几微米到几十纳米到电子的几十埃。 然而,与X射线晶体学和单粒子冷冻电子技术等成熟技术相比, 由于细胞断层扫描的分辨率严重下降,细胞断层扫描尚未发挥其潜力。 由于机械失准和非刚性样本变形的影响而进行的重建 辐射损伤、楔形缺失伪影、拥挤环境中的低信噪比以及尚未解决的问题 构象异质性。为了解决这些问题,我们建议利用我们的自动化新方法 联合 3D 对齐和正则化重建,结合了迭代投影方法的进步和 凸优化可在严重失准的情况下实现优于最先进的重建分辨率 数据。将数学建模和机器学习的新进展融入我们的框架提供了 通往一系列基于模型和数据驱动的新算法的清晰道路,这些算法可以解决当前的挑战和 细胞断层扫描数据分析的瓶颈。我们特别建议(1)开发技术 改进的倾斜系列对准,可解释样品的刚体运动并恢复各向异性 使用光流对准来消除辐射引起的扭曲的影响; (2) 开发一个解码器 细胞体积中随机定向的大分子中包含的全频率信息,以约束 楔形缺失的影响; (3) 提高从细化体积中提取的子断层图的分辨率 通过开发体积编码器-变形解码器深度神经网络来建模构象 异质性。通过开发新的数据驱动方法来限制缺失的楔形信息并处理 形状变异性是非刚性变形的连续体而不是离散的簇,我们的算法 与目前相比,该框架将显着提高重建的分辨率和质量 现有的数据分析方法忽略了这些影响。随着结构生物学界越来越 专注于细胞断层扫描,对易于使用的自动化软件的需求不断增长 有经验的和新手用户。 (4) 为此,该提案产生的算法将转化为 GPU- 启用开源用户友好的软件来加速对不断增长的成像数据池的分析。 最终,我们的算法框架将能够从噪声、 不完整且复杂的数据,从而增强细胞断层扫描的预测能力来回答 重要的生物学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANUPRIYA PANDE其他文献

KANUPRIYA PANDE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于增广拉格朗日函数的加速分裂算法及其应用研究
  • 批准号:
    12371300
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
  • 批准号:
    82304065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
  • 批准号:
    62302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
  • 批准号:
    82360529
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
  • 批准号:
    10648177
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
  • 批准号:
    10814562
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 50.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了