Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
基本信息
- 批准号:10711723
- 负责人:
- 金额:$ 336.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAffectAnimal ModelBiological ModelsBiophysical ProcessBiophysicsBrainBrain DiseasesCalciumCalibrationCellsClinicalClinical TrialsComplementComputer ModelsCoupledCritiquesDataData SetDevelopmentDiseaseElectric StimulationElectrophysiology (science)ElementsEngineeringEpilepsyExhibitsFeedbackFire - disastersFrequenciesFutureHumanImageIndividualKnowledgeLogicMediatingMemory DisordersMental DepressionModelingMusNeural Network SimulationNeuronsOperative Surgical ProceduresOpticsOutcomeOutputParkinson DiseasePatientsPatternPharmacologyPhasePhysiologicalPhysiologyPopulationRampRecurrenceResearchResolutionResourcesRodentRouteSliceStimulusTechniquesTestingTherapeuticTimeTranslatingType I Epithelial Receptor CellWorkWritingawakebiophysical propertiescell typeclinical applicationdensitydesignexperimental studyin vivoinsightmeetingsmicrostimulationnetwork modelsneuralneural stimulationneuromechanismneuropsychiatryneuroregulationnovelnovel therapeuticspatch clamppredictive modelingpreventrecruitresponseside effectstroke recoverytherapeutically effectivetooltranslational approachtwo-photon
项目摘要
Direct local electrical stimulation (DLES) is an increasingly important therapeutic tool for treating brain disorders such as Parkinson’s, epilepsy, and OCD. There is considerable disagreement, however, as to how neural stimulation, especially at the scale of neurons, affects human brain function. This lack of understanding hampers the design and implementation of more effective stimulation approaches, particularly in the cortex. To deliver on the precise, inclusive, and effective therapeutic promise of DLES, a more mechanistic understanding of the biophysics of cortical stimulation is required. This project combines single-cell electrophysiology in both human and mouse cortex, both ex-vivo and in vivo with pharmacology, optical physiology, and sophisticated computational modeling to identify the mechanisms underlying electrical stimulation. In a truly translational approach, these multiple research angles will allow us to test in-depth mechanistic hypotheses in the mouse and whether these results hold true in the human. We will test the hypothesis that DLES induces a dynamic sequence of excitatory (E) neuron output countered by subsequent inhibitory (I) neuron. We will evaluate stimulation intensity, frequency, phase, distance, and species as key parameters in modulating the timing and strength of this E-I dynamic sequence. These data on neuronal dynamics will be leveraged into actionable knowledge through an integrate-and-fire based recurrent neuronal network model which we will use to predict cortical responses to novel stimuli and develop specific stimulation patterns to evoke desired neural outputs. Specifically, we will identify the biophysical mechanisms by which DLES recruits different neuronal populations in acute brain slices of human and mouse cortex using whole-cell electrophysiology and pharmacology (Aim 1). We will then characterize neuron and population responses to DLES in vivo, using Neuropixels probes in awake human and mouse cortex, complemented by optical recordings in the awake mouse (Aim 2). This extensive and detailed data set will be used to refine and validate a trainable neural network model we have developed to assess stimulation effects on E and I cell types (Aim 3). The model will be the testing ground to develop specific patterns of stimulation based on desired outputs such as targeting either E or I cells. The model will also be used to test novel input stimuli including amplitude and frequency ramps, chirps, and step functions to predict neural responses. Testing these model-predicted outputs, or responses, will then be carried out through further ex- and in-vivo physiology. Not only will we connect dynamics of a primary model system to activity in the human brain, but this work will also provide a unique route toward predictable modulation of activity in individual neurons and local circuits to design tailored neuromodulation therapies. Our multi-scale analyses of the neural mechanisms of electrical stimulation will catalyze novel, targeted, and mechanistically driven therapeutic approaches that could revolutionize stimulation-based treatment for memory disorders, depression, stroke recovery, and a host of other neuropsychiatric ailments.
直接局部电刺激 (DLES) 是治疗帕金森病、癫痫和强迫症等脑部疾病的一种日益重要的治疗工具,然而,对于神经刺激(尤其是神经元尺度的刺激)如何影响人类大脑功能,存在相当大的分歧。这种理解的缺乏阻碍了更有效的刺激方法的设计和实施,特别是在皮层,为了实现 DLES 的精确、包容和有效的治疗承诺,需要对皮层刺激的生物物理学项目有更机械的理解。人类和小鼠皮层的单细胞电生理学,包括离体和体内药理学、物理光学科学和复杂的计算模型,以识别电刺激的机制,以真正的转化方法,这些多个研究角度将使我们能够。为了在小鼠中测试深入的机制假设以及这些结果在人类中是否成立,我们将测试 DLES 诱导随后的抑制性 (I) 神经元对抗的动态序列的兴奋性 (E) 神经元输出。刺激强度、频率、相位、距离和物种作为调节 E-I 动态序列的时间和强度的关键参数,这些有关神经动力学的数据将通过我们基于集成和激发的循环神经网络模型转化为可操作的知识。将用于预测皮层对新刺激的反应并开发特定的刺激模式以激发所需的神经输出,具体来说,我们将使用全细胞电生理学和识别 DLES 在人类和小鼠皮层急性脑切片中招募不同神经群的生物物理机制。然后,我们将使用清醒的人类和小鼠皮层中的 Neuropixels 探针,并辅以清醒小鼠的光学记录来表征体内对 DLES 的神经和群体反应(目标 2)。用于完善和验证我们开发的可训练神经网络模型,以评估对 E 和 I 细胞类型的刺激效果(目标 3)。该模型将成为根据所需输出(例如针对 E 细胞)开发特定刺激模式的试验场。或者该模型还将用于测试新的输入刺激,包括幅度和频率斜坡、线性调频脉冲和阶跃函数,以预测这些模型预测的输出或响应,然后将通过进一步的测试来进行。我们不仅将主要模型系统的动力学与人脑的活动联系起来,而且还将为单个神经元和局部回路的活动的可预测调节提供独特的途径,以设计定制的神经调节疗法。多尺度分析电刺激的神经机制将催生新颖的、有针对性的、机械驱动的治疗方法,这些方法可能会彻底改变基于刺激的记忆障碍、抑郁症、中风恢复和许多其他神经精神疾病的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SYDNEY S CASH其他文献
SYDNEY S CASH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SYDNEY S CASH', 18)}}的其他基金
256-channel Digital Neural Signal Processor Real-Time Data Acquisition System
256通道数字神经信号处理器实时数据采集系统
- 批准号:
10630883 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Establishing a Brain Health Index from the Sleep Electroencephalogram
从睡眠脑电图建立大脑健康指数
- 批准号:
10180268 - 财政年份:2021
- 资助金额:
$ 336.02万 - 项目类别:
Understanding the Fast and Slow Spatiotemporal Dynamics of Human Seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10584583 - 财政年份:2019
- 资助金额:
$ 336.02万 - 项目类别:
Understanding the fast and slow spatiotemporal dynamics of human seizures
了解人类癫痫发作的快慢时空动态
- 批准号:
10361503 - 财政年份:2019
- 资助金额:
$ 336.02万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9116972 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
CRCNS: Dynamic network analysis of human seizures for therapeutic intervention
CRCNS:人类癫痫发作的动态网络分析用于治疗干预
- 批准号:
9318585 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
Seizure focus delineation using spontaneous and stimulus evoked EEG features
使用自发和刺激诱发的脑电图特征描绘癫痫病灶
- 批准号:
8891148 - 财政年份:2015
- 资助金额:
$ 336.02万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 336.02万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别:
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
- 批准号:
10664637 - 财政年份:2023
- 资助金额:
$ 336.02万 - 项目类别: