SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
基本信息
- 批准号:10652500
- 负责人:
- 金额:$ 101.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAmericanBasic ScienceBuprenorphineCellular PhoneClinicalClinical TrialsClinical Trials NetworkConduct Clinical TrialsContractsCost AnalysisCost MeasuresCriminal JusticeDataData AnalysesDoseDropoutEffectivenessEventEyeFeasibility StudiesFutureGoalsHealthHealth Care CostsHealth Care SectorHealth PersonnelHomelessnessHospitalsInterventionMeasurementMeasuresMethadoneMethodologyNational Institute of Drug AbuseNursesOpiate AddictionOpioidOutcomeOutputPatientsPharmaceutical PreparationsPhysiciansPilot ProjectsPoliciesPolicy MakerPopulationProbabilityProductivityProfessional counselorProviderPsychiatryPublishingQuality-Adjusted Life YearsRandomizedRecoveryRelapseResourcesSalivarySiteSocietiesSurveysSystemTestingTimeTreatment Effectivenessarmbehavior predictionbuprenorphine treatmentcohortcostcost effectivecost effectivenesscost-effectiveness evaluationdrug testingeconomic evaluationillicit opioidimprovedinner cityinstrumentmethadone treatmentmigrationopioid misuseopioid useopioid use disorderprediction algorithmresponsesafety netstakeholder perspectivestooltreatment as usualusabilityuser-friendlywillingness
项目摘要
PROJECT SUMMARY
Over 2 million Americans suffer from Opioid Use Disorder (OUD) and another 9 million misuse opioids.
Treatments for opioid addiction exist, but effectiveness is compromised when subjects use illicit opiates during
treatment. Reuse rates during treatment can be high, and reducing illicit opiate use during treatment has thus
recently become a major NIDA policy goal. Elevated reuse rates not only compromise treatment effectiveness,
but this behavior predicts, and likely drives, treatment dropout. With the support of a NIDA basic science R01,
we developed a set of easy-to-use instruments that predict opioid reuse events with about twice the accuracy of
any existing tool. The 5-minute battery we developed indicates the numerical probability that a patient will reuse
illicit opiates within the next 7-10 days. In a pilot cohort, we successfully migrated this battery to a commercial
smartphone platform, and demonstrated 100% retention and >85% compliance (median compliance > 95%) over
a use period of up to 4 months. In a survey of our largely homeless MOUD patients we found that 85% already
had smartphones and data contracts appropriate for using this platform as a part of their treatment. In a survey
of OUD treatment physicians, we found that our system and the reuse prediction it provides, was both highly
desirable and usable as implemented. Finally, we found in a reanalysis of data from CTN-0051 that dynamic
dosing of this very kind reduces relapse rates. Our primary goal in this mid-scale clinical trial is to test the
hypothesis that clinicians who use the output of our mobile system to adjust buprenorphine and methadone
dosing achieve lower opiate reuse rates than physicians who provide care-as-usual. Our secondary goal is to
examine the usability and desirability of this solution for clinicians with an eye to usability and large-scale
deployment. Our third and final goal is to measure the cost-effectiveness of this solution from multiple
perspectives. If we are successful it will be possible to employ an algorithmic and measurement-based approach
to OUD treatment with methadone and buprenorphine which reduces reuse rates and relapse rates amongst
OUD patients.
项目概要
超过 200 万美国人患有阿片类药物使用障碍 (OUD),另有 900 万人滥用阿片类药物。
存在阿片类药物成瘾的治疗方法,但当受试者在治疗期间使用非法阿片类药物时,疗效会受到影响
治疗。治疗期间的重复使用率可能很高,因此减少治疗期间非法阿片类药物的使用
最近成为 NIDA 的一项主要政策目标。重复使用率的提高不仅会影响处理效果,
但这种行为预示着,并且可能导致治疗中断。在NIDA基础科学R01的支持下,
我们开发了一套易于使用的仪器,可以预测阿片类药物的重复使用事件,其准确度约为
任何现有的工具。我们开发的 5 分钟电池可指示患者重复使用的数字概率
在接下来的 7-10 天内使用非法阿片类药物。在试点队列中,我们成功地将这种电池迁移到商业
智能手机平台,并展示了 100% 的保留率和 >85% 的合规性(中位合规性 > 95%)
使用期限长达4个月。在对大部分无家可归的 MOUD 患者进行的一项调查中,我们发现 85% 的患者已经
拥有适合使用该平台作为治疗一部分的智能手机和数据合同。在一项调查中
的 OUD 治疗医生,我们发现我们的系统及其提供的重用预测都非常好
实施后是理想且可用的。最后,我们在对 CTN-0051 数据的重新分析中发现,动态
这种剂量可以降低复发率。我们在这个中型临床试验中的主要目标是测试
假设临床医生使用我们移动系统的输出来调整丁丙诺啡和美沙酮
与照常提供护理的医生相比,阿片类药物的重复使用率较低。我们的次要目标是
检查该解决方案对临床医生的可用性和可取性,着眼于可用性和大规模
部署。我们的第三个也是最后一个目标是从多个方面衡量该解决方案的成本效益
观点。如果我们成功了,就有可能采用基于算法和测量的方法
使用美沙酮和丁丙诺啡进行 OUD 治疗,可降低重复使用率和复发率
OUD 患者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL W GLIMCHER其他文献
PAUL W GLIMCHER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL W GLIMCHER', 18)}}的其他基金
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
- 批准号:
10280199 - 财政年份:2021
- 资助金额:
$ 101.12万 - 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
- 批准号:
10372606 - 财政年份:2021
- 资助金额:
$ 101.12万 - 项目类别:
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
- 批准号:
10468772 - 财政年份:2021
- 资助金额:
$ 101.12万 - 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
- 批准号:
10543804 - 财政年份:2021
- 资助金额:
$ 101.12万 - 项目类别:
Computational neuroeconomic models of addiction: quantifying progression and treatment in opioid use disorder
成瘾的计算神经经济模型:量化阿片类药物使用障碍的进展和治疗
- 批准号:
9448124 - 财政年份:2017
- 资助金额:
$ 101.12万 - 项目类别:
Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder
成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型
- 批准号:
9751824 - 财政年份:2017
- 资助金额:
$ 101.12万 - 项目类别:
Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder
成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型
- 批准号:
10197068 - 财政年份:2017
- 资助金额:
$ 101.12万 - 项目类别:
Neural Mechanisms of Cost and Benefit Integration During Decision-Making
决策过程中成本与收益整合的神经机制
- 批准号:
8750036 - 财政年份:2014
- 资助金额:
$ 101.12万 - 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
- 批准号:
8583586 - 财政年份:2013
- 资助金额:
$ 101.12万 - 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
- 批准号:
8677858 - 财政年份:2013
- 资助金额:
$ 101.12万 - 项目类别:
相似海外基金
Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
- 批准号:
10684876 - 财政年份:2022
- 资助金额:
$ 101.12万 - 项目类别:
Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
- 批准号:
10670469 - 财政年份:2022
- 资助金额:
$ 101.12万 - 项目类别:
Pandemic Preparedness: Biocontainment Facility Upgrade and Integration at UTMB/Galveston National Laboratory
流行病防范:UTMB/加尔维斯顿国家实验室的生物防护设施升级和集成
- 批准号:
10611097 - 财政年份:2022
- 资助金额:
$ 101.12万 - 项目类别: