Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder

成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型

基本信息

  • 批准号:
    9751824
  • 负责人:
  • 金额:
    $ 42.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Opioid use disorder (OUD) is a debilitating chronic disease producing a growing burden on patients, providers, and the healthcare system. From 2002 to 2013, OUD rates have more than doubled and the number of individuals seeking treatment for the first time has more than quadrupled, driving unprecedented medical, scientific, and political interest in the etiology, pathophysiology, and treatment of OUD. Excellent treatments for opioid addiction exist, but their effectiveness is limited by lack of adherence to medication, treatment dropout, and relapse. There is scant knowledge about the neural and cognitive factors associated with and perhaps underlying treatment success or failure. A key goal of the present proposal is to develop reliable objective predictors of which individuals may need additional intervention and when best to intervene, i.e., when there is a risk for imminent relapse or treatment dropout. To do so, we propose to develop and test a computational neuroeconomic approach to quantifying the behavioral and neural features of addiction during OUD treatment. This computational approach to psychiatry seeks to understand circuit-level information processing in neural systems and how these mechanisms relate to normal and pathophysiological behavior. We hypothesize that quantifying individual subject choice behavior - via a longitudinally-sampled array of neuroeconomic decision tasks and models - provides information to: (1) distinguish relevant clinical populations (patients vs. controls and patient subgroups); (2) assist clinical prognosis (future treatment efficacy); (3) dynamically track ongoing clinical status (e.g. likelihood of relapse); and (4) examine the neural basis of behavioral changes in the recovery process. Specifically, we hypothesize that clinical status during treatment is characterized by the position and trajectory of individual subjects in a multidimensional space of decision parameters (quantifying impulsivity, risk tolerance, and ambiguity attitude). To test this hypothesis, we propose to longitudinally track the behavior and neural activity of patients seeking treatment for OUD. In Aim 1, we test the hypothesis that single-timepoint multidimensional decision data provides diagnostic and prognostic information, categorizing different clinical subpopulations (OUD patients vs. controls, treatment responsive vs. treatment refractory patients). In Aim 2, we test the hypothesis that dynamic multidimensional decision data tracks and predicts time-varying changes in clinical status, including the probability of future relapse. In Aim 3, we test the hypothesis that static and dynamic features of multidimensional decision data reflect corresponding features and changes in integrated value coding in specific neural circuits. Understanding how decision-related computations reflect clinical status is critical to closing the explanatory gap between biology and behavior in addiction. If successful, this approach offers both basic scientific and translational benefits: a clearer understanding of how and why behavior changes in addiction treatment, and easily-implementable tools to monitor treatment effectiveness and clinical course in individual patients.
项目概要/摘要 阿片类药物使用障碍 (OUD) 是一种使人衰弱的慢性疾病,给患者、提供者、 和医疗保健系统。从 2002 年到 2013 年,OUD 费率增加了一倍多,并且 首次寻求治疗的人数增加了四倍多,推动了前所未有的医疗、 对 OUD 的病因学、病理生理学和治疗的科学和政治兴趣。优秀的治疗方法 阿片类药物成瘾确实存在,但其有效性因缺乏服药依从性、治疗中途退出、 并复发。对于与之相关的神经和认知因素知之甚少,也许 潜在的治疗成功或失败。本提案的一个关键目标是制定可靠的目标 哪些人可能需要额外干预以及何时最好进行干预的预测因素,即何时 即将复发或停止治疗的风险。为此,我们建议开发并测试一个计算 量化 OUD 治疗期间成瘾行为和神经特征的神经经济学方法。 这种精神病学的计算方法旨在理解神经系统中的电路级信息处理 系统以及这些机制如何与正常和病理生理行为相关。我们假设 量化个体受试者的选择行为——通过一系列纵向采样的神经经济决策 任务和模型 - 提供信息以:(1) 区分相关临床人群(患者与对照) 和患者亚组); (2)辅助临床预后(未来治疗效果); (3)动态跟踪正在进行的 临床状态(例如复发的可能性); (4) 检查行为变化的神经基础 恢复过程。具体来说,我们假设治疗期间的临床状态的特点是 决策参数多维空间中个体主体的位置和轨迹(量化 冲动、风险承受能力和模糊态度)。为了检验这个假设,我们建议纵向跟踪 寻求 OUD 治疗的患者的行为和神经活动。在目标 1 中,我们检验以下假设: 单时间点多维决策数据提供诊断和预后信息、分类 不同的临床亚群(OUD 患者与对照、治疗反应性与治疗难治性 患者)。在目标 2 中,我们测试动态多维决策数据跟踪和预测的假设 临床状态随时间变化的变化,包括未来复发的可能性。在目标 3 中,我们测试 假设多维决策数据的静态和动态特征反映了相应的特征 以及特定神经回路中综合值编码的变化。了解决策如何相关 反映临床状态的计算对于缩小生物学和行为之间的解释差距至关重要 瘾。如果成功,这种方法将提供基本的科学和转化效益: 了解成瘾治疗中行为变化的方式和原因,以及易于实施的工具 监测个体患者的治疗效果和临床过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL W GLIMCHER其他文献

PAUL W GLIMCHER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL W GLIMCHER', 18)}}的其他基金

SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
  • 批准号:
    10280199
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
  • 批准号:
    10372606
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
  • 批准号:
    10543804
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
  • 批准号:
    10468772
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
  • 批准号:
    10652500
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Computational neuroeconomic models of addiction: quantifying progression and treatment in opioid use disorder
成瘾的计算神经经济模型:量化阿片类药物使用障碍的进展和治疗
  • 批准号:
    9448124
  • 财政年份:
    2017
  • 资助金额:
    $ 42.62万
  • 项目类别:
Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder
成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型
  • 批准号:
    10197068
  • 财政年份:
    2017
  • 资助金额:
    $ 42.62万
  • 项目类别:
Neural Mechanisms of Cost and Benefit Integration During Decision-Making
决策过程中成本与收益整合的神经机制
  • 批准号:
    8750036
  • 财政年份:
    2014
  • 资助金额:
    $ 42.62万
  • 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
  • 批准号:
    8583586
  • 财政年份:
    2013
  • 资助金额:
    $ 42.62万
  • 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
  • 批准号:
    8677858
  • 财政年份:
    2013
  • 资助金额:
    $ 42.62万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Addressing the “Readiness Gap:” An eHealth Intervention to Increase Patient Motivation for Evidence-Based Chronic Pain Interventions and Reduced Opioid Reliance
解决“准备差距”:电子健康干预措施可提高患者对循证慢性疼痛干预措施的积极性并减少阿片类药物的依赖
  • 批准号:
    10724026
  • 财政年份:
    2023
  • 资助金额:
    $ 42.62万
  • 项目类别:
Neural, endocrine, and behavioral markers of psychosocial stress predicting drug use outcomes in human opioid addiction
心理社会压力的神经、内分泌和行为标志物预测人类阿片类药物成瘾的药物使用结果
  • 批准号:
    10047807
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Trajectories of socially regulated gene expression, methamphetamine use, and viral load among HIV-positive men who have sex with men (MSM) receiving contingency management
接受应急管理的男男性行为艾滋病毒阳性男性 (MSM) 中社会调节基因表达、甲基苯丙胺使用和病毒载量的轨迹
  • 批准号:
    10161548
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Neural, endocrine, and behavioral markers of psychosocial stress predicting drug use outcomes in human opioid addiction
心理社会压力的神经、内分泌和行为标志物预测人类阿片类药物成瘾的药物使用结果
  • 批准号:
    10551319
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
Trajectories of socially regulated gene expression, methamphetamine use, and viral load among HIV-positive men who have sex with men (MSM) receiving contingency management
接受应急管理的男男性行为艾滋病毒阳性男性 (MSM) 中社会调节基因表达、甲基苯丙胺使用和病毒载量的轨迹
  • 批准号:
    10595088
  • 财政年份:
    2021
  • 资助金额:
    $ 42.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了