Improving biological nanopores for precision nucleic acid sequencing using a computational microscope
使用计算显微镜改进生物纳米孔以进行精确核酸测序
基本信息
- 批准号:10414906
- 负责人:
- 金额:$ 26.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAmino Acid SequenceBiologicalBiomedical EngineeringCase StudyCommunitiesComputer ModelsComputer softwareComputing MethodologiesConsumptionCustomDNADNA SequenceDNA sequencingDataDetectionDevelopmentDiseaseDocumentationEngineeringExclusionGeneticIndividualIon TransportMainstreamingMeasuresMethodologyMethodsMicroscopeMicroscopicModelingModificationMolecularMolecular ConformationMutagenesisMutationNucleic acid sequencingNucleotidesOutcomePreparationPublishingRNARNA SequencesResearchResolutionResourcesSamplingScreening for cancerSignal TransductionSoftware ToolsSourceStatistical MethodsSystemTechnologyTestingTheoretical modelTimeWorkbaseblindclinical diagnosticsconstrictioncostdesigndrug developmentexperienceexperimental studygenetic makeupimprovedin silicoinnovationinstrumentationmolecular dynamicsmutantnanoporeportabilityprogramssequencing platformsimulationtooltranscriptome sequencing
项目摘要
This project aims to develop a tool that can considerably increase the precision of nucleic acid
sequencing by enabling rational engineering of biological nanopores for sequencing applications.
Although the methodology of nanopore sequencing has undergone major improvement with
regard to transporting DNA and RNA molecules through the nanopore, sample preparation, base-
calling algorithms, etc., relatively little has been published on improving the raw accuracy of
nucleotide detection, which is the most commonly quoted deficiency of the nanopore sequencing
method. This project will address this deficiency by developing a computational technology that
will greatly simplify the design of custom nanopores for RNA and DNA sequencing, potentially
leading to orders-of-magnitude improvement in row read accuracy. The key innovation of the
project exploits recent methodological advances that have made plausible de novo prediction of
nanopore current levels from simulations alone. To transform this methodological breakthrough
into an accurate nanopore design tool, this project will examine and improve the simulation
methodology guided by a set of experiments designed specifically to provide the information
needed to improve the model. The practical utility of the method will be demonstrated by designing
custom pores to detect biologically significant RNA modifications. The resulting computational
method will be made available to the research community in the form of self-contained and well-
documented software. This project will be realized by an interdisciplinary team that combines
expertise in biological (UMass) nanopore experiment with theoretical and computation modeling
(UIUC).The two PIs involved each have over 15 years of experience with research on nanopore
technology, which includes synthesis and characterization of biological nanopores (Chen) and
microscopic simulations of DNA and ion transport through biological nanopores (Aksimentiev).
该项目旨在开发一种可以显着提高核酸检测精度的工具
通过对生物纳米孔进行合理的工程设计以用于测序应用来进行测序。
尽管纳米孔测序的方法已经经历了重大改进
关于通过纳米孔运输 DNA 和 RNA 分子、样品制备、碱基
调用算法等,关于提高原始精度的文章相对较少
核苷酸检测,这是纳米孔测序最常被引用的缺陷
方法。该项目将通过开发一种计算技术来解决这一缺陷
将极大地简化用于 RNA 和 DNA 测序的定制纳米孔的设计
导致行读取精度提高几个数量级。该技术的关键创新在于
该项目利用了最新的方法论进展,使从头预测变得合理
纳米孔电流水平仅来自模拟。转变这一方法论突破
转化为精确的纳米孔设计工具,该项目将检查和改进模拟
以一组专门为提供信息而设计的实验为指导的方法
需要改进模型。该方法的实用性将通过设计来证明
定制孔来检测具有生物学意义的 RNA 修饰。由此产生的计算结果
该方法将以独立且完善的形式提供给研究界
记录的软件。该项目将由一个跨学科团队来实现,该团队结合了
生物(麻省大学)纳米孔实验的理论和计算建模专业知识
(UIUC)。参与的两位PI均拥有超过15年的纳米孔研究经验
技术,包括生物纳米孔的合成和表征(Chen)和
DNA 和离子通过生物纳米孔传输的微观模拟 (Aksimentiev)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksei Aksimentiev其他文献
Aleksei Aksimentiev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksei Aksimentiev', 18)}}的其他基金
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别:
Improving biological nanopores for precision nucleic acid sequencing using a computational microscope
使用计算显微镜改进生物纳米孔以进行精确核酸测序
- 批准号:
10214806 - 财政年份:2021
- 资助金额:
$ 26.65万 - 项目类别:
Improving biological nanopores for precision nucleic acid sequencing using a computational microscope
使用计算显微镜改进生物纳米孔以进行精确核酸测序
- 批准号:
10664981 - 财政年份:2021
- 资助金额:
$ 26.65万 - 项目类别:
Multi-resolution Approaches to Modeling the 3D Structure, Delivery, and Replication of Viral Genomes
病毒基因组 3D 结构、传递和复制建模的多分辨率方法
- 批准号:
10626860 - 财政年份:2020
- 资助金额:
$ 26.65万 - 项目类别:
Multi-resolution Approaches to Modeling the 3D Structure, Delivery, and Replication of Viral Genomes
病毒基因组 3D 结构、传递和复制建模的多分辨率方法
- 批准号:
10201674 - 财政年份:2020
- 资助金额:
$ 26.65万 - 项目类别:
Multi-resolution Approaches to Modeling the 3D Structure, Delivery, and Replication of Viral Genomes
病毒基因组 3D 结构、传递和复制建模的多分辨率方法
- 批准号:
10414908 - 财政年份:2020
- 资助金额:
$ 26.65万 - 项目类别:
Plasmonic nanopores for trapping, controlled motion and sequencing of DNA
用于 DNA 捕获、控制运动和测序的等离激元纳米孔
- 批准号:
9128456 - 财政年份:2013
- 资助金额:
$ 26.65万 - 项目类别:
Plasmonic nanopores for trapping, controlled motion and sequencing of DNA
用于 DNA 捕获、受控运动和测序的等离激元纳米孔
- 批准号:
8728989 - 财政年份:2013
- 资助金额:
$ 26.65万 - 项目类别:
Plasmonic nanopores for trapping, controlled motion and sequencing of DNA
用于 DNA 捕获、控制运动和测序的等离激元纳米孔
- 批准号:
8572877 - 财政年份:2013
- 资助金额:
$ 26.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 26.65万 - 项目类别: