Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
基本信息
- 批准号:10723819
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAnxietyArtificial IntelligenceAttentionAwardBehavior assessmentCaringClassificationClinicalCognitiveComputational LinguisticsDataDecision MakingDetectionDevelopmentDiagnosisDictionaryDigital biomarkerDimensionsEmotionalEngineeringEvaluationFutureGeneralized Anxiety DisorderGoalsHealthHeterogeneityHumanImpairmentIndividualInterventionInterviewK-Series Research Career ProgramsLanguageLearningLinguisticsMajor Depressive DisorderMeasurementMeasuresMental DepressionMentored Patient-Oriented Research Career Development AwardMentorshipMethodologyMethodsModelingMonitorMoralityNatural Language ProcessingNegative ValenceOutpatientsPatient Self-ReportPatientsPatternPerformancePopulationPositive ValenceProtocols documentationPsychiatryPsychotherapyPublic HealthQuality of lifeReactionResearchResearch Domain CriteriaRewardsRiskSamplingScientific Advances and AccomplishmentsSecuritySourceStandardizationSymptomsSystemTestingTrainingTranscriptValidationbasebehavioral healthbiomarker identificationcomorbiditydeep learningdeep learning modeldesigndiagnostic strategydigital healthdigital tooldisabilityeconomic costemotional stimulusexperienceimprovedlearning strategyloss of functionmultidisciplinaryneuroeconomicsnovelprogramsrecruitresponsescreeningsuicidal risktooltrait
项目摘要
PROJECT SUMMARY / ABSTRACT
Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) are among the primary
causes of health burden worldwide. MDD is a leading cause of disability associated with increased morality
risk, and both MDD and GAD result in considerable economic costs, loss of functioning, and decreased quality
of life. One of the biggest challenges in responding to current calls for population-level screening is to monitor
MDD and GAD at a large scale while minimizing assessment burden. Existing assessment methods, however,
rely on subjective measures, are based on diagnostic approaches, and are burdensome in the extent needed
to characterize MDD and GAD in their heterogeneity, which would require combined evaluation of all
symptoms. New methods are needed to accurately assess behavioral health, overcome barriers to monitoring
and care, and advance the scientific understanding of depression and anxiety.
The proposed study aims to address these gaps by deconstructing MDD and GAD into Digital
Biomarkers (DB) based on linguistic features identified by large language models. State of the art artificial
intelligence and Natural Language Processing methods allow representation learning of DB from cognitive and
emotional domains captured from linguistic information. While effective, passive, and at-scale monitoring are
the primary benefits of DB, we will also use them to study relevant Research Domain Criteria (RDoC),
including negative valence system reactions and positive valence traits. The study goals are to: 1) Design DB
of MDD and GAD symptoms using deep learning methods, by training an attention-based language model on a
very large corpus of de-identified psychotherapy treatment transcripts; 2) Examine preliminary performance
and feasibility of the DB model in a highly characterized sample of MDD and GAD patients, and compare
results with clinician ratings; 3) Explore improvements to the DB model based on research paradigms
consistent with RDoC constructs, to further refine DB model pipeline and future deployment in clinical settings.
The program of research and training described in this mentored patient-oriented research career
development award is aimed at developing systematic digital health approaches to allow dimensional
conceptualization of MDD and GAD consistent with RDoC, enhancing the ease and consistency of detection to
ultimately support targeted interventions. The proposed project is strongly supported by a multidisciplinary
team including the mentorship of Drs. Naomi Simon and Kyunghyun Cho, and the domain expertise of Drs.
Paul Glimcher, Tim Althoff, Zhe Chen, and Tanzeem Choudhury. The experience gained from the award will
enable the pursuit of future R-level studies focusing on advanced computational psychiatry approaches to
further refine DB models to improve passive and objective assessment of behavioral health, and ultimately
improve our empirical understanding of depression and anxiety.
项目概要/摘要
重度抑郁症(MDD)和广泛性焦虑症(GAD)是主要的抑郁症
造成全世界健康负担的原因。 MDD 是与道德提高相关的残疾的主要原因
风险,MDD 和 GAD 都会导致相当大的经济成本、功能丧失和质量下降
的生活。响应当前人群筛查呼吁的最大挑战之一是监测
大规模的 MDD 和 GAD,同时最大限度地减少评估负担。然而现有的评估方法
依赖主观测量,基于诊断方法,并且在所需程度上是繁重的
描述 MDD 和 GAD 的异质性,这需要对所有
症状。需要新方法来准确评估行为健康,克服监测障碍
和护理,促进对抑郁和焦虑的科学认识。
拟议的研究旨在通过将 MDD 和 GAD 解构为数字化来解决这些差距
基于大型语言模型识别的语言特征的生物标记 (DB)。最先进的人工
智能和自然语言处理方法允许从认知和自然语言中进行数据库的表示学习
从语言信息中捕获的情感领域。虽然有效、被动和大规模的监测是
DB 的主要好处,我们还将使用它们来研究相关的研究领域标准 (RDoC),
包括负价系统反应和正价特征。研究目标是: 1)设计数据库
使用深度学习方法,通过在基于注意力的语言模型上训练 MDD 和 GAD 症状
非常大的未识别身份的心理治疗笔录语料库; 2) 检查初步性能
DB 模型在 MDD 和 GAD 患者的高度特征化样本中的可行性,并进行比较
具有临床医生评级的结果; 3)基于研究范式探索DB模型的改进
与 RDoC 结构一致,进一步完善数据库模型管道和未来在临床环境中的部署。
这个以患者为导向的研究生涯中描述的研究和培训计划
发展奖旨在开发系统的数字健康方法,以实现维度
MDD 和 GAD 的概念化与 RDoC 一致,增强了检测的简易性和一致性
最终支持有针对性的干预措施。拟议的项目得到了多学科的大力支持
团队,包括博士的指导。 Naomi Simon 和 Kyunghyun Cho 以及博士的领域专业知识。
保罗·格里姆彻、蒂姆·阿尔索夫、陈哲和坦泽姆·乔杜里。从该奖项中获得的经验将
促进未来 R 级研究的重点是先进的计算精神病学方法
进一步完善DB模型,以改善行为健康的被动和客观评估,最终
提高我们对抑郁和焦虑的实证理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matteo Malgaroli其他文献
Matteo Malgaroli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别: