Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
基本信息
- 批准号:10798514
- 负责人:
- 金额:$ 23.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Advancement of health equity requires evidence and tools tailored for minority groups. The shift towards
individualized precision medicine requires risk prediction tools to guide prevention and intervention. Due to the
genetic heterogeneity and social economic disparity, risk factors may disproportionately impact race/ethnicity
(R/E) groups. Overall risk prediction constructed from predominantly white populations can perform poorly on
other ethnic groups, leading to mis-diagnosis, over-treatment and other adverse health consequences. Efforts
on developing R/E-specific risk prediction at local healthcare systems are limited by the small sample size
caused by inadequate representability of minority populations. To address the gap and to advance precision
medicine for non-white patients, it is crucial to harness minority enriched clinical data and develop risk models
transferable to point of care. The All of Us (AoU) program offers a wealth of comprehensive multi-modal data
on whole genome sequencing (WGS), real-world electronic health records (EHR) and patient reported
outcomes (PRO) with enhanced minority participation, providing the common evidence base for learning
general R/E-specific risk patterns and training risk models for minority populations at local healthcare systems.
In this proposal, we develop innovative methods for risk modeling in AoU data tailored for minority populations
and its validation on external healthcare data. We will showcase the proposed methods in two use cases: 1)
rheumatoid arthritis (RA) genome-wide association study (GWAS) at Mass General Brigham (MGB) focusing
on the genetic risk factors; 2) cancer cardiotoxicity prediction study at M Health Fairview (MHF) focusing on
clinical and social determinants of health (SDoH) risk factors. In Aim 1, we integrate risk factor and disease
onset outcome data across WGS, EHR and PRO in AoU data to construct the risk prediction model that yields
better risk prediction accuracy, risk factor identification and fairness across R/E groups. In Aim 2, we design
privacy preserving algorithms to validate the generalizability risk modeling from AoU data on external
healthcare data and establish the transfer learning strategy to adapt AoU risk models for local healthcare
systems. We intend for the methods to facilitate development of risk modeling using AoU data with focus on
minority populations, as well as toe demonstrate the potential impact of the AoU program on improving care at
local healthcare.
项目摘要/摘要
健康公平的进步需要为少数群体量身定制的证据和工具。转向
个性化的精密医学需要指导预防和干预的风险预测工具。由于
遗传异质性和社会经济差异,危险因素可能不成比例地影响种族/种族
(R/E)组。主要是白人种群构建的总体风险预测的性能很差
其他种族,导致错误诊断,过度治疗和其他不良健康后果。努力
在开发R/E特异性风险预测时,在当地医疗保健系统中受到较小样本量的限制
由少数群体的代表性不足引起。解决差距并提高精度
非白人患者的药物,这对于利用少数族裔富含临床数据和开发风险模型至关重要
可以转移到护理点。我们所有人(AOU)计划提供了大量全面的多模式数据
全基因组测序(WGS),现实世界电子健康记录(EHR)和患者报道
成果(Pro)具有增强的少数群体参与,为学习提供了共同的证据基础
当地医疗保健系统中少数族裔人口的一般R/E特异性风险模式和培训风险模型。
在此提案中,我们开发了针对少数族裔人口量身定制的AOU数据进行风险建模的创新方法
及其对外部医疗保健数据的验证。我们将在两种用例中展示提出的方法:1)
大规模杨百翰(MGB)聚焦的类风湿关节炎(RA)全基因组关联研究(GWAS)
关于遗传危险因素; 2)M Health Fairview(MHF)的癌症心脏毒性预测研究
健康的临床和社会决定因素(SDOH)风险因素。在AIM 1中,我们整合了风险因素和疾病
跨WGS,EHR和PRO的发作结果数据在AOU数据中构建了产生的风险预测模型
更好的风险预测准确性,风险因素识别和跨R/E组的公平性。在AIM 2中,我们设计
隐私保存算法以验证外部数据的AOU数据验证概括性风险建模
医疗保健数据并建立转移学习策略以适应当地医疗保健风险模型
系统。我们打算采用使用AOU数据来促进风险建模的方法,重点是
少数群体以及脚趾表明了AOU计划对改善护理的潜在影响
当地医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:1059091310590913
- 财政年份:2023
- 资助金额:$ 23.95万$ 23.95万
- 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:1072381910723819
- 财政年份:2023
- 资助金额:$ 23.95万$ 23.95万
- 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:1065596810655968
- 财政年份:2023
- 资助金额:$ 23.95万$ 23.95万
- 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:1067810810678108
- 财政年份:2023
- 资助金额:$ 23.95万$ 23.95万
- 项目类别:
Correcting biases in deep learning models
纠正深度学习模型中的偏差
- 批准号:1058431410584314
- 财政年份:2023
- 资助金额:$ 23.95万$ 23.95万
- 项目类别: