Immunomodulatory biomaterials for regenerative healing of burn wounds
用于烧伤创面再生愈合的免疫调节生物材料
基本信息
- 批准号:10480614
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAdipose tissueAdultBiocompatible MaterialsBioinformaticsBiologyBiomedical EngineeringBurn injuryCell CommunicationCellsCharacteristicsCicatrixClinicalCommunicationContractureCosmeticsDataData SetDepositionDermisDevelopmentEngineeringEquilibriumExcisionExtracellular MatrixFibroblastsFibrosisFormulationFunctional disorderFutureGeneticGrantHairHair follicle structureHistologyHumanHydrogelsImmuneImmune responseImmune signalingImmunologyImpairmentInflammationInflammatoryKnowledgeLigandsMacrophageMammalsMethodologyMicroscopyMilitary PersonnelModalityModelingMolecularMolecular ProfilingMusNatural regenerationNeomycin resistance genePainPathway interactionsPatientsPattern recognition receptorPhenotypePopulationPorosityPostoperative PeriodReceptor ActivationReceptor SignalingRegenerative capacityRegenerative responseResolutionRoleSHH geneScienceSebaceous GlandsSeriesSignal PathwaySignal TransductionSkinSpeedStructureSweat GlandsT-LymphocyteTechniquesTemperatureTestingTissuesTransgenic OrganismsTranslatingVeteransWorkWound modelsacute woundadaptive immune responsebeta cateninbioscaffoldburn therapyburn woundcombatexperimental studyfetalhair regenerationhealingimmunoregulationimprovedinnovationloss of functionmicrobiomemouse modelmutantnext generationnovelnovel therapeuticsoverexpressionparticlepreventprogramsreceptorregeneration functionregenerativesingle-cell RNA sequencingskin barrierskin regenerationskin woundtargeted treatmenttherapy outcometissue regenerationtranscriptomicstranslational modelwoundwound carewound closurewound healingwound treatment
项目摘要
During combat, burn injuries to our military personnel often leave our Veterans with severely scarred skin,
painful contractures, with impaired barrier or temperature function. Novel therapies that can prevent or reverse
fibrosis are desperately needed. Outside of fetal wounds, regeneration of native hair follicles, sweat glands, and
adipose tissue, was previously thought impossible. Recent work has shown that, in principle, very large skin
wounds in adult mice can spontaneously regenerate new hair follicles and adipose tissue, while small wounds
or large burn wounds in mice end with the same fate as clinical wounds in humans: fibrotic scarring. We recently
discovered that when our innovative biomaterial, Microporous Annealed Particle (MAP) hydrogel, activates an
immune response, it can induce hair follicle regeneration in small murine wounds that would otherwise heal by
scarring. This proposal combines state-of-the-art molecular, bioinformatic, and bioengineering techniques to: 1)
improve our understanding of why burn wounds in mice result in fibrosis while large excisional wounds result in
regeneration; and 2) use immunomodulatory MAP hydrogel formulations to transform the fibrotic burn wound
microenvironment into one conducive of skin regeneration.
This application will test our hypothesis that by engineering immunomodulatory MAP hydrogel to specifically
target pro-regenerative immune responses and limit pathways contributing to burn wound fibrosis, we can induce
a highly desirable regenerative response in burn wounds. The first aim will leverage single cell transcriptomics,
a novel bioinformatics methodology to assess cell to cell communication, and loss of function mutants to define
molecular programs responsible for fibrotic wound healing in burn wounds versus regenerative healing in large
excisional wounds at single cell resolution. The second aim will test whether two immunomodulatory MAP
formulations that regenerate hair follicles in small excisional wounds can reprogram immune cell to fibroblast
communication networks in the burn wound microenvironment to activate regeneration. In the third aim, we will
confirm that immune and fibroblast signaling networks in murine fibrosis are active in human burn wounds to
identify novel anti-fibrotic strategies activated in regenerating wounds.
The proposed studies are significant because they will establish new immune cell-driven mechanism for
diminishing fibrosis and provide opportunities to develop anti-fibrotic and/or proregenerative targets for therapies
for reducing scarring in burn wounds. The proposed studies are innovative because they will establish new
types of immune-modulating biomaterials, and enable a new paradigm of biomaterial-triggered regenerative
response for burn wounds tissues. In the future, the results of this study will drive the development of next-
generation immune-modulating wound biomaterials for potential clinical use.
在战斗中,我们的军事人员烧伤常常使我们的退伍军人皮肤留下严重的疤痕,
疼痛性挛缩,屏障或温度功能受损。可以预防或逆转的新疗法
纤维化是迫切需要的。在胎儿伤口之外,原生毛囊、汗腺和
脂肪组织,以前被认为是不可能的。最近的工作表明,原则上,非常大的皮肤
成年小鼠的伤口可以自发再生新的毛囊和脂肪组织,而小伤口
小鼠大面积烧伤伤口的结局与人类临床伤口相同:纤维化疤痕。我们最近
发现当我们的创新生物材料微孔退火颗粒 (MAP) 水凝胶时,会激活
免疫反应,它可以诱导小鼠小伤口的毛囊再生,否则这些伤口可以通过
疤痕。该提案结合了最先进的分子、生物信息学和生物工程技术:1)
提高我们对为什么小鼠烧伤伤口会导致纤维化而大切除伤口会导致纤维化的理解
再生; 2) 使用免疫调节 MAP 水凝胶制剂来转化纤维化烧伤创面
形成有利于皮肤再生的微环境。
该应用将测试我们的假设,即通过工程化免疫调节 MAP 水凝胶来特异性地
针对促再生免疫反应并限制导致烧伤创面纤维化的途径,我们可以诱导
烧伤伤口非常理想的再生反应。第一个目标将利用单细胞转录组学,
一种新的生物信息学方法来评估细胞间通讯,并定义功能丧失突变体
负责烧伤伤口纤维化伤口愈合与大面积再生愈合的分子程序
单细胞分辨率的切除伤口。第二个目标将测试两种免疫调节 MAP 是否
在小切除伤口中再生毛囊的制剂可以将免疫细胞重新编程为成纤维细胞
烧伤创面微环境中的通信网络激活再生。在第三个目标中,我们将
证实小鼠纤维化中的免疫和成纤维细胞信号网络在人类烧伤伤口中活跃
确定在再生伤口中激活的新型抗纤维化策略。
拟议的研究意义重大,因为它们将建立新的免疫细胞驱动机制
减少纤维化并为开发抗纤维化和/或再生治疗靶点提供机会
用于减少烧伤伤口的疤痕。拟议的研究具有创新性,因为它们将建立新的
类型的免疫调节生物材料,并启用生物材料触发再生的新范例
对烧伤创面组织的反应。未来,这项研究成果将推动下一代的发展——
产生用于潜在临床用途的免疫调节伤口生物材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP SCUMPIA其他文献
PHILIP SCUMPIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP SCUMPIA', 18)}}的其他基金
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
- 批准号:
10569029 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
- 批准号:
10364550 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10278462 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10471941 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10693831 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Cytosolic DNA sensors in cutaneous wound healing and host defense
细胞质 DNA 传感器在皮肤伤口愈合和宿主防御中的作用
- 批准号:
9761443 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Regulation of macrophage transcriptional networks by stress pathways in the skin
皮肤应激途径对巨噬细胞转录网络的调节
- 批准号:
8750802 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Studies on the impact of acetyl-cysteine on metabolism
乙酰半胱氨酸对代谢影响的研究
- 批准号:
10574934 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Role of Mitochondrial TNAP in Adaptive Thermogenesis
线粒体 TNAP 在适应性产热中的作用
- 批准号:
10591696 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Desmosomes in cardiomyocyte homeostasis and disease
桥粒在心肌细胞稳态和疾病中的作用
- 批准号:
10606894 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Depleting Somatostatinergic Neurons Recapitulates Diabetic Phenotypes In Brain and Adipose Tissue
消耗生长抑素能神经元重现大脑和脂肪组织中的糖尿病表型
- 批准号:
10647698 - 财政年份:2022
- 资助金额:
-- - 项目类别: