Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
基本信息
- 批准号:10364550
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acetic AcidsAdoptionAgeAlgorithmic SoftwareAlgorithmsArchitectureArizonaBasal cell carcinomaBenignBiopsyCOVID-19 pandemicCarcinomaCaringCicatrixClinicClinic VisitsClinicalClinical assessmentsClinics and HospitalsColorCommunitiesComputer softwareDataData SetDermatologicDermatologistDermatologyDevelopmentDevicesDiagnosisEarly DiagnosisEarly treatmentEnhancement TechnologyEpidermisExposure toFreezingFutureGeneral PopulationGoalsGrowthHealthcareHistologicHistologyImageImaging DeviceImaging technologyIndividualJunctional NevusLesionLibrariesLifeMachine LearningMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMedical Care CostsMedical ImagingMethodologyMicroscopicMilitary PersonnelNeoplasmsNetwork-basedNuclearOptical Coherence TomographyOutputPathologistPathologyPatient CarePatientsPilot ProjectsProceduresResolutionRiskSamplingScanningSeborrheic keratosisSignal TransductionSkinSkin CancerSkin NeoplasmsSlideSquamous cell carcinomaStainsSun ExposureTechniquesTechnologyTestingThe SunTimeTissue StainsTissuesTrainingTriageUnited StatesUniversitiesVeteransVisitWait TimeWorkaccurate diagnosisbasecancer diagnosiscostdata acquisitiondeep learningdeep learning algorithmdiagnosis evaluationdiagnostic accuracydigitaldigital imaginggenerative adversarial networkhistological imagehistological stainsimaging modalityimprovedin vivokeratinocytemachine learning algorithmmicroscopic imagingmilitary servicemultiphoton microscopynoninvasive diagnosisnovelportabilitypremalignantpreventprospectivereflectance confocal microscopyservice memberskin disorderskin lesionskin squamous cell carcinomasun protectiontechnology developmentteledermatologytelehealthtissue processingtooltumoruptakevirtual
项目摘要
Despite improvements in non-invasive medical imaging to aid in the diagnosis of internal malignancy,
improvements in imaging the skin non-invasively have been slower. The dermatoscope, a device that gives a
magnified and polarized view of the skin, is the only ancillary tool commonly used for clinical assessment by
dermatologists to assist in diagnosis. Keratinocyte carcinomas, basal cell carcinoma and squamous cell
carcinoma, are by far the most common cancers diagnosed in the United States. Due to sun exposure during
military deployment, our nation’s Veterans have an increased likelihood of developing these and other skin
cancers compared to the general population. Early keratinocyte carcinomas are often difficult to distinguish
clinically from irritated/inflamed precancerous or benign skin lesions (actinic or seborrheic keratoses). A non-
invasive technology that can assist dermatologists obtain a diagnosis of skin lesions may prevent unnecessary
biopsy, resulting in fewer scars, as well as allow diagnosis and definitive treatment of skin malignancies in the
same clinic visit, improving clinical workflow and patient access to dermatology clinics. A recently approved
skin imaging technology, reflectance confocal microscopy (RCM), provides state-of-the-art cellular level
resolution of the skin without biopsy, but still has many limitations, limiting its utility to only the most skilled
users. We recently began using software-based digital enhancements to autofluorescence of unstained frozen
tissue sections of microscopic slides to virtually stain unfixed tissue and provide rapid histology quality images
without requiring the laborious tissue processing required of actual processing. Our overarching hypothesis is
that we can apply our digital technology to overcome many of the technical limitations of RCM, and improve
the dermatologists’ or pathologist’s ability to obtain more accurate diagnosis of skin lesion by RCM without
requiring skin biopsy. Our preliminary data demonstrates that our software algorithms can digitally enhance
RCM images of normal skin and basal cell carcinoma, resulting in histologic quality images. In Aim 1, we will
use methodological and computational approaches to refine tissue processing and data acquisition to provide
optimal registration of skin images to obtain the highest quality data sets to train the machine learning
algorithm. In Aim 2, we will incorporate inflamed and uninflamed seborrheic keratosis, actinic keratoses, and
squamous cell carcinoma skin lesions to incorporate features of these lesions into our algorithms originally
developed for normal skin and basal cell carcinoma. In Aim 3, we will perform a pilot study to test the optimized
virtual histology algorithm by prospectively collecting images of consecutive skin lesions on a variety of patient
samples. We will compare how novice and expert RCM dermatology and pathology users perform in obtaining
diagnosis using RCM with and without the virtual histology algorithm. If successful, these studies will provide
an initial step towards noninvasive diagnosis of skin cancer for Veterans and civilians.
尽管非侵入性医学成像有所改善以帮助诊断内部恶性肿瘤,但
对皮肤进行成像的改进,非侵入性的速度很慢。皮肤镜,一种给出的设备
皮肤的放大和极化视图是唯一用于临床评估的辅助工具
皮肤科医生协助诊断。角质形成细胞癌,碱性细胞癌和鳞状细胞
癌是迄今为止美国被诊断出的最常见的癌症。由于在阳光下暴露
军事部署,我们国家的退伍军人有可能发展这些皮肤和其他皮肤的可能性
癌症与普通人群相比。早期角质形成癌通常很难区分
临床上来自炎症/发炎的癌前或良性皮肤病变(活化或脂肪性角膜造成)。非 -
可以帮助皮肤科医生获得皮肤病变诊断的侵入性技术可能会阻止不必要
活检,导致疤痕减少,并允许对皮肤恶性肿瘤的诊断和确切治疗
同样的诊所就诊,改善了临床工作流程和患者进入皮肤病学诊所的机会。最近批准的
皮肤成像技术,反射率共聚焦显微镜(RCM)提供最先进的细胞水平
没有活检的皮肤分辨率,但仍然有许多局限性,仅限于最熟练的效用
用户。我们最近开始使用基于软件的数字增强功能来自动荧光未染色的冷冻
微观幻灯片的组织切片几乎染色未粘的组织并提供快速的组织学质量图像
不需要实际处理所需的实验室组织处理。我们的总体假设是
我们可以运用数字技术来克服RCM的许多技术局限性,并改善
皮肤科医生或病理学家能够通过RCM获得更准确的皮肤病变诊断
需要皮肤活检。我们的初步数据表明,我们的软件算法可以数字化增强
正常皮肤和基本细胞癌的RCM图像,导致组织学质量图像。在AIM 1中,我们将
使用方法和计算方法来完善组织处理和数据获取
皮肤图像的最佳注册以获取训练机器学习的最高质量数据集
算法。在AIM 2中,我们将融合发炎且未发炎的脂肪脂性角化病,光化性角膜结构和
鳞状细胞癌皮肤病变最初将这些病变的特征纳入我们的算法
为正常皮肤和基本细胞癌而开发。在AIM 3中,我们将进行一项试点研究以测试优化
虚拟组织学算法通过前瞻性收集各种患者的连续皮肤病变图像
样品。我们将比较用户在获取方面的新颖和专家RCM皮肤病学和病理学
使用有或没有虚拟组织学算法的RCM诊断。如果成功,这些研究将提供
朝着退伍军人和平民对皮肤癌无创诊断的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP SCUMPIA其他文献
PHILIP SCUMPIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP SCUMPIA', 18)}}的其他基金
Immunomodulatory biomaterials for regenerative healing of burn wounds
用于烧伤创面再生愈合的免疫调节生物材料
- 批准号:
10480614 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
- 批准号:
10569029 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10278462 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10471941 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging immune-fibroblast interactions for biomaterial induced skin regeneration
利用免疫成纤维细胞相互作用进行生物材料诱导的皮肤再生
- 批准号:
10693831 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Cytosolic DNA sensors in cutaneous wound healing and host defense
细胞质 DNA 传感器在皮肤伤口愈合和宿主防御中的作用
- 批准号:
9761443 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Regulation of macrophage transcriptional networks by stress pathways in the skin
皮肤应激途径对巨噬细胞转录网络的调节
- 批准号:
8750802 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
- 批准号:
10738134 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Machine Learning and Reflectance Confocal Microscopy for Biopsy-free Virtual Histology of Squamous Skin Neoplasms
机器学习和反射共焦显微镜用于鳞状皮肤肿瘤的免活检虚拟组织学
- 批准号:
10569029 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Towards Cervical cancer elimination: Implementation and scale-up of a single-visit, screen-and-treat approach with thermal ablation for sustainable cervical cancer prevention services in Kenya
消除宫颈癌:在肯尼亚实施和扩大单次就诊、筛查和治疗的热消融方法,以提供可持续的宫颈癌预防服务
- 批准号:
10180713 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Towards Cervical cancer elimination: Implementation and scale-up of a single-visit, screen-and-treat approach with thermal ablation for sustainable cervical cancer prevention services in Kenya
消除宫颈癌:在肯尼亚实施和扩大单次就诊、筛查和治疗的热消融方法,以提供可持续的宫颈癌预防服务
- 批准号:
10491699 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Towards Cervical cancer elimination: Implementation and scale-up of a single-visit, screen-and-treat approach with thermal ablation for sustainable cervical cancer prevention services in Kenya
消除宫颈癌:在肯尼亚实施和扩大单次就诊、筛查和治疗的热消融方法,以提供可持续的宫颈癌预防服务
- 批准号:
10693340 - 财政年份:2021
- 资助金额:
-- - 项目类别: