Desmosomes in cardiomyocyte homeostasis and disease
桥粒在心肌细胞稳态和疾病中的作用
基本信息
- 批准号:10606894
- 负责人:
- 金额:$ 81.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAblationAccelerationAdhesivesAdipose tissueAdultArrhythmiaBiomedical EngineeringCardiacCardiac MyocytesCardiomyopathiesCell NucleusCellsChemicalsComplexDISC componentsDataDesmosomesDevelopmentDiseaseDissectionElementsExperimental ModelsFluorescent in Situ HybridizationFunctional disorderGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGoalsHeart AbnormalitiesHeart failureHomeostasisHumanIn Situ HybridizationIntercalated discKnowledgeLeadLifeLinkMetabolismMethodsModelingMolecularMusMuscle functionMutationMyocardial ContractionMyocardial dysfunctionMyocardiumN-CadherinPathogenesisPathway interactionsPatientsPeriodicityPhenotypePlasmaProteinsProteomicsRegulatory ElementRelaxationResolutionRoleSarcomeresSignal TransductionTestingVentricular ArrhythmiaWNT Signaling Pathwayarrhythmogenic cardiomyopathycandidate identificationcandidate selectiondefined contributiondesmoplakinfollow-upgain of functiongenetic approachheart rhythmimprovedin vivoinduced pluripotent stem cellinhibitorinnovationinsightloss of functionmosaicmultiple omicsmutantnovelpreservationprotein functionsingle moleculesingle nucleus RNA-sequencingtranscriptometranscriptomics
项目摘要
SUMMARY
Intercalated disks (ICDs) connect the termini of adjacent cardiomyocytes (CMs) physically, electrically, and
chemically. The structural role of ICDs to preserve CM integrity in the face of billions of cycles of forceful con-
traction and relaxation is well appreciated; however, the function of ICDs as essential CM signaling hubs is
only now emerging. Arrhythmogenic cardiomyopathy (ACM) provides a unique window into the function of
ICDs and specifically desmosomes. ACM is a potentially lethal disorder characterized by high arrhythmia bur-
den, loss of contractile myocardium, and replacement by fibro-fatty tissue. Mutations of desmosome genes
(PKP2, DSG2, DSC2, DSP, JUP) occur in approximately half of ACM patients. Despite growing knowledge
about ACM disease pathogenesis, the mechanistic links between desmosome mutations and arrhythmias, my-
ocardial dysfunction, and fibrofatty replacement remain poorly understood.
The overall goal of this proposal is to gain insights into the mechanisms by which desmosome mutations
cause arrhythmia and myocardial dysfunction; Our overarching hypothesis is that desmosomes are inte-
gral for maintaining normal cardiomyocyte homeostasis through both their structural and signaling
activities. ACM mutations disrupt these activities to cause both loss of structural integrity and aberrant
signaling. We will test these hypotheses through four parallel but complementary Specific Aims: (1) We will
examine cell composition and gene regulation of human ACM myocardium, using concurrent single nucleus
RNA-seq and ATAC-seq, and spatial transcriptomics (snMulti-seq) with massively parallel single molecule fluo-
rescent in situ hybridization (MERFISH); (2) We will use mosaic, adult, cardiomyocyte specific inactivation of
Dsp to probe the cell autonomous functions of desmosomes. This model will be studied using snMulti-seq and
MERFISH, followed by interrogation of key predicted regulators using in vivo gain- and loss-of-function ap-
proaches; (3) Using proximity proteomics of ICD component N-cadherin, we identified novel ICD components
and ICD components that are altered by Dsp ablation. We will use in vivo gain- and loss-of-function ap-
proaches to study the function of selected candidates identified by this screen; (4) Define the contributions of
WNT and GSK3 signaling to ACM phenotypes in DSP mutant hiPSC-CMs. Using genetic approaches in bioen-
gineered hiPSC-CMs, we will dissect the involvement of GSK3 and WNT signaling to ACM pathogenesis.
Impact: This proposal will advance our understanding of the function of desmosomes and ICDs in CM
homeostasis and the molecular pathogenesis of ACM. This knowledge will accelerate efforts to develop
targeted ACM therapies.
概括
闰盘(ICD)以物理、电学和物理方式连接相邻心肌细胞(CM)的末端。
化学上。 ICD 在面对数十亿次强力连接时保持 CM 完整性的结构性作用
牵引力和放松效果深受赞赏;然而,ICD 作为重要的 CM 信号中枢的功能是
现在才刚刚出现。致心律失常性心肌病 (ACM) 为了解心律失常性心肌病 (ACM) 的功能提供了一个独特的窗口
ICD,特别是桥粒。 ACM 是一种潜在致命性疾病,其特征是高度心律失常
den,收缩性心肌丧失,并被纤维脂肪组织替代。桥粒基因突变
(PKP2、DSG2、DSC2、DSP、JUP)发生在大约一半的 ACM 患者中。尽管知识不断增长
关于 ACM 疾病发病机制、桥粒突变与心律失常之间的机制联系、我的-
心功能障碍和纤维脂肪替代仍然知之甚少。
该提案的总体目标是深入了解桥粒突变的机制
引起心律失常和心肌功能障碍;我们的总体假设是桥粒是相互连接的
gral 通过其结构和信号传导维持正常的心肌细胞稳态
活动。 ACM 突变破坏这些活性,导致结构完整性丧失和异常
发信号。我们将通过四个平行但互补的具体目标来检验这些假设:(1)我们将
使用并发单核检查人 ACM 心肌的细胞组成和基因调控
RNA-seq 和 ATAC-seq,以及具有大规模并行单分子荧光的空间转录组学 (snMulti-seq)
最近的原位杂交(MERFISH); (2) 我们将使用马赛克、成体、心肌细胞特异性灭活
Dsp 探测桥粒的细胞自主功能。该模型将使用 snMulti-seq 进行研究
MERFISH,然后使用体内功能获得和丧失的应用程序询问关键的预测调节因子
引诱; (3) 利用 ICD 成分 N-钙粘蛋白的邻近蛋白质组学,我们鉴定了新的 ICD 成分
和通过 Dsp 消融改变的 ICD 组件。我们将使用体内功能获得和丧失的应用程序
研究该筛选所确定的选定候选者的功能的方法; (4) 定义贡献
DSP 突变体 hiPSC-CM 中 WNT 和 GSK3 信号传导至 ACM 表型。在生物工程中使用遗传方法
为了构建 hiPSC-CM,我们将剖析 GSK3 和 WNT 信号传导与 ACM 发病机制的关系。
影响:该提案将增进我们对桥粒和 ICD 在 CM 中功能的理解
稳态和 ACM 的分子发病机制。这些知识将加速开发工作
靶向 ACM 疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Tswenching Pu其他文献
William Tswenching Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Tswenching Pu', 18)}}的其他基金
CMYA5 regulation of cardiac dyad structure and function
CMYA5对心脏二元体结构和功能的调节
- 批准号:
10607816 - 财政年份:2022
- 资助金额:
$ 81.65万 - 项目类别:
Genetic regulation of atrial gene expression in development and disease
发育和疾病中心房基因表达的遗传调控
- 批准号:
10576399 - 财政年份:2021
- 资助金额:
$ 81.65万 - 项目类别:
Genetic regulation of atrial gene expression in development and disease
发育和疾病中心房基因表达的遗传调控
- 批准号:
10355481 - 财政年份:2021
- 资助金额:
$ 81.65万 - 项目类别:
Enabling mammalian in vivo forward genetic screens based on cell morphology
实现基于细胞形态的哺乳动物体内正向遗传筛选
- 批准号:
9754850 - 财政年份:2018
- 资助金额:
$ 81.65万 - 项目类别:
Transcriptional regulation of arteriovenous differentiation
动静脉分化的转录调控
- 批准号:
9751955 - 财政年份:2017
- 资助金额:
$ 81.65万 - 项目类别:
Transcriptional regulation of arteriovenous differentiation
动静脉分化的转录调控
- 批准号:
9376461 - 财政年份:2017
- 资助金额:
$ 81.65万 - 项目类别:
2015 Weinstein Cardiovaascular Development Conference
2015年韦恩斯坦心血管发展大会
- 批准号:
8911591 - 财政年份:2015
- 资助金额:
$ 81.65万 - 项目类别:
YAP1 Regulation of cardiomyocyte proliferation, function, and regeneration
YAP1 对心肌细胞增殖、功能和再生的调节
- 批准号:
8412652 - 财政年份:2013
- 资助金额:
$ 81.65万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
- 批准号:82370318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 81.65万 - 项目类别:
Rapid functional genetics to study stem cell-niche interactions in the skin
快速功能遗传学研究皮肤干细胞生态位相互作用
- 批准号:
10579275 - 财政年份:2022
- 资助金额:
$ 81.65万 - 项目类别:
Mechanistic modeling of epigenetic modifier mutations in human pluripotent stem cell-derived immune cells
人类多能干细胞衍生的免疫细胞表观遗传修饰突变的机制模型
- 批准号:
10733331 - 财政年份:2022
- 资助金额:
$ 81.65万 - 项目类别:
Investigation of impaired neural stem cell activation in Alzheimer's Disease
阿尔茨海默氏病神经干细胞活化受损的研究
- 批准号:
10624857 - 财政年份:2022
- 资助金额:
$ 81.65万 - 项目类别:
Dissecting the role of serine metabolism in stem cell fate and tissue regeneration
剖析丝氨酸代谢在干细胞命运和组织再生中的作用
- 批准号:
10389594 - 财政年份:2021
- 资助金额:
$ 81.65万 - 项目类别: