Transcriptional regulation of arteriovenous differentiation
动静脉分化的转录调控
基本信息
- 批准号:9376461
- 负责人:
- 金额:$ 52.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAllelesArteriesArteriovenous malformationAtherosclerosisBindingBioinformaticsBiological AssayBloodBlood VesselsBlood flowCalcifiedCardiovascular systemCell LineCellsCerebral Arteriovenous MalformationsChildhoodChildhood strokeChromatinCodeDataData SetDatabasesDiseaseEP300 geneEmbryoEndothelial CellsEnhancersFamilyGene ExpressionGenesGeneticGenetic TranscriptionGenetically Engineered MouseGenomicsGoalsHumanInflammationInformaticsKnowledgeLinkLocationMaintenanceMalignant NeoplasmsMapsMeasuresMediator of activation proteinMethodsMolecularMolecular ProfilingMusMutagenesisMyocardial IschemiaNatureNuclear ReceptorsOrphanPathogenesisPathway interactionsPluripotent Stem CellsPredispositionProcessRegulationRegulatory ElementSignal TransductionSpecific qualifier valueSpecificityStrokeStructureTechniquesTestingTissuesTranscriptional RegulationTransgenic OrganismsVEGFA geneValidationVasculitisVeinsVenousangiogenesisapoAI regulatory protein-1biochipcalcificationchicken ovalbumin upstream promoter-transcription factorembryo cellexperimental studygamma secretasegenome-widehigh throughput screeninghuman diseaseimprovedin vivoinduced pluripotent stem cellinhibitor/antagonistinnovationinsightmalformationmouse modelnotch proteinnovelnovel strategiespediatric patientsprecise genome editingprogramstranscription factor
项目摘要
Project Summary/Abstract
Endothelial cells (ECs) that line the blood circulatory system belong to the arterial and venous lineages. Ar-
terial and venous ECs intrinsically differ in their susceptibility to inflammation, atherosclerosis, and calcification.
Moreover, disruption of genetic programs that maintain AV differences in mouse models causes arteriovenous
malformations (AVMs), the leading cause of pediatric strokes. Thus understanding the genetic mechanisms
that specify and maintain AV differences is critical to better understand the pathogenesis of a range of human
disorders. Specification of arterial and venous lineages occurs prior to the establishment of blood flow, sug-
gesting that AV differences are primarily under genetic control. Despite extensive efforts, our understanding of
the molecular mechanisms that establish and maintain arterial and venous identity remains incomplete. Notch
signaling has been identified as being critical for arterial differentiation, and the transcription factor COUP-TFII
has been identified as being critical for venous differentiation, at least in part by antagonizing Notch signaling.
In depth study of 4 transcriptional enhancers with artery selective activity has yielded anecdotal information on
some features required for their artery-selective activity. However, systematic knowledge of principles that de-
termine arterial or venous specific expression is lacking. In large part, this is due to the low throughput nature
of the techniques that have been employed to study this problem.
We have developed two unique, high throughput approaches that will surmount this barrier and yield syste-
matic information about the mechanisms that are employed to yield artery or vein selective activity. First, we
developed a method for high affinity, tissue-specific identification of active enhancers marked by p300, and of
regulatory elements bound by the Notch target RBPJ. Second, we have developed a method for high through-
put (on the order of hundreds of thousands in one experiment) testing of candidate enhancers within an inte-
grated genomic context. In this proposal we apply these advances to systematically investigate arteriovenous
differentiation and the mechanisms by which it is regulated by Notch signaling.
In Aim 1, we test the hypothesis that identifiable transcriptional codes drive artery and vein specific
transcriptional enhancer activity. We will use p300 binding in ECs to identify candidate enhancers, and then
test the enhancers in parallel for artery or vein selective activity. Bioinformatic analyses of this database of
enhancers with selective activity will identify the candidate transcriptional lexicon. These predictions will be
tested by followup dense mutagenesis of selected enhancers, with further validation in transgenic embryo
assays.
In Aim 2, we focus on the mechanisms by which Notch signaling modulates RBPJ activity. We test the hy-
pothesis that RBPJ regulates AV differentiation through multiple distinct Notch-dependent and -independent
mechanisms. This aim hinges upon our unique ability to efficiently map RPBJ chromatin occupancy in vivo in
ECs. By mapping RBPJ and p300 under Notch activated and Notch suppressed conditions in developing em-
bryos, we will define the effects of Notch intracellular domain on RBPJ location and activity. Combining these
data with the artery and vein selective enhancers found in Aim 1 will define artery or vein selective enhancers
with Notch/RBPJ-dependent and -independent activity.
This proposal is technically innovative in the novel genome-wide mapping and high throughput enhancer
testing approaches. The conceptual innovation is the new understanding of artery or vein selective transcrip-
tional regulation and of Notch signaling that will arise from application of these novel approaches.
This proposal is significant because it will advance our understanding of angiogenesis by filling in critical
gaps in our understanding of how arteriovenous differences are specified and maintained. This basic knowl-
edge is relevant to diverse classes of human disease such as cancer, atherosclerosis, and inflammation.
项目摘要/摘要
血液循环系统属于动脉和静脉谱系的内皮细胞(EC)。 ar
特性和静脉EC在炎症,动脉粥样硬化和钙化的敏感性上本质上有所不同。
此外,在鼠标模型中维持AV差异的遗传程序的破坏会导致动脉静脉
畸形(AVM),是小儿中风的主要原因。因此了解遗传机制
指定和维持AV差异对于更好地了解一系列人的发病机理至关重要
疾病。动脉和静脉谱系的规格发生在建立血流之前,SUG-
病差异主要在遗传控制之下。尽管做出了广泛的努力,但我们对
建立和维持动脉和静脉身份的分子机制仍然不完整。缺口
信号传导已被确定为动脉分化至关重要,而转录因子coup-tfii
至少部分通过拮抗Notch信号传导,至少部分地被确定为静脉分化至关重要。
在对4个具有动脉选择活性的4个转录增强子的深入研究中,产生了有关轶事信息
其动脉选择活动所需的一些特征。但是,对原则的系统知识
缺乏终末动脉或静脉特定表达。在很大程度上,这是由于吞吐量低
用于研究此问题的技术。
我们已经开发了两种独特的高通量方法,可以克服这一障碍并产生系统。
有关用于产生动脉或静脉选择性活性的机制的信息信息。首先,我们
开发了一种用于高亲和力的方法,以P300标记的活动增强剂的组织特异性鉴定以及
由Notch目标RBPJ约束的调节元素。其次,我们开发了一种用于高渗透的方法
(在一个实验中,在数十万的顺序中)对候选增强子进行了测试
磨碎的基因组环境。在此提案中,我们将这些进步应用到系统地研究动脉旋转
分化和由Notch信号调节的机制。
在AIM 1中,我们检验了可识别的转录代码驱动动脉和特定静脉的假设
转录增强子活性。我们将在EC中使用P300绑定来识别候选增强剂,然后
并行测试增强子的动脉或静脉选择性活性。此数据库的生物信息学分析
具有选择性活动的增强子将识别候选转录词典。这些预测将是
通过选定增强剂的随访密集诱变进行测试,并在转基因胚胎中进行进一步验证
测定。
在AIM 2中,我们关注Notch信号调节RBPJ活性的机制。我们测试了
RBPJ通过多个不同的缺口依赖性和独立的pothesis调节了AVIATION
机制。这个目的取决于我们在体内有效绘制RPBJ染色质占用率的独特能力
ECS。通过绘制RBPJ和p300在Notch激活和抑制条件下,在发展EM-
Bryos,我们将定义Notch细胞内结构域对RBPJ位置和活动的影响。结合这些
AIM 1中发现的动脉和静脉选择性增强子的数据将定义动脉或静脉选择性增强子
具有Notch/RBPJ依赖性和非依赖性活性。
该建议在新的全基因组映射和高吞吐量增强器中具有技术创新性
测试方法。概念创新是对动脉或静脉选择性译的新理解 -
这些新方法的应用将产生的调节和凹槽信号传导。
该提议很重要,因为它将通过填充关键来提高我们对血管生成的理解
我们对如何指定和维持动力静脉差异的理解差距。这个基本的知识 -
边缘与癌症,动脉粥样硬化和炎症等各种人类疾病相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Tswenching Pu其他文献
William Tswenching Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Tswenching Pu', 18)}}的其他基金
Desmosomes in cardiomyocyte homeostasis and disease
桥粒在心肌细胞稳态和疾病中的作用
- 批准号:
10606894 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
CMYA5 regulation of cardiac dyad structure and function
CMYA5对心脏二元体结构和功能的调节
- 批准号:
10607816 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Genetic regulation of atrial gene expression in development and disease
发育和疾病中心房基因表达的遗传调控
- 批准号:
10576399 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Genetic regulation of atrial gene expression in development and disease
发育和疾病中心房基因表达的遗传调控
- 批准号:
10355481 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Enabling mammalian in vivo forward genetic screens based on cell morphology
实现基于细胞形态的哺乳动物体内正向遗传筛选
- 批准号:
9754850 - 财政年份:2018
- 资助金额:
$ 52.34万 - 项目类别:
Transcriptional regulation of arteriovenous differentiation
动静脉分化的转录调控
- 批准号:
9751955 - 财政年份:2017
- 资助金额:
$ 52.34万 - 项目类别:
2015 Weinstein Cardiovaascular Development Conference
2015年韦恩斯坦心血管发展大会
- 批准号:
8911591 - 财政年份:2015
- 资助金额:
$ 52.34万 - 项目类别:
YAP1 Regulation of cardiomyocyte proliferation, function, and regeneration
YAP1 对心肌细胞增殖、功能和再生的调节
- 批准号:
8412652 - 财政年份:2013
- 资助金额:
$ 52.34万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Alpha-Synuclein-Specific T cells in Parkinson's Disease Pathogenesis
帕金森病发病机制中的α-突触核蛋白特异性 T 细胞
- 批准号:
10752172 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Dopaminergic mechanisms of resilience to Alzheimer's disease neuropathology
阿尔茨海默病神经病理学恢复的多巴胺能机制
- 批准号:
10809199 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别: