CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
基本信息
- 批准号:9121345
- 负责人:
- 金额:$ 11.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlcoholismAlgorithmsAreaAttenuatedBiological Neural NetworksBiomechanicsBlood flowBrainCerebrumClinicalCollaborationsComputer SimulationComputing MethodologiesDevelopmentDiseaseEquus caballusFunctional Magnetic Resonance ImagingFundingFutureGerman populationHeadHealthHumanImageImaging DeviceInstitutionInternationalInvestigationKnowledgeLinkLiquid substanceLiteratureMagnetic Resonance ImagingMapsMeasuresMechanicsMetabolismMethodsModelingMolecularMotionNeurologicNeuronsNeurosciences ResearchPostdoctoral FellowPrincipal InvestigatorPropertyProtocols documentationResearchResearch PersonnelSensoryShapesSignal TransductionStimulusStructureSubstance abuse problemTechniquesThinkingThree-Dimensional ImageTimeTissuesTrainingVenousWorkbasebody systembrain parenchymabrain tissuecerebral hemodynamicscerebrovascularcomputerized toolscooperative studycraniumfallsfield studygraduate studenthemodynamicsimaging modalityin vivointerstitialneurovascular couplingnon-invasive imagingpressurerelating to nervous systemresidenceresponsescaffoldstemtool
项目摘要
DESCRIPTION (provided by applicant): Evoked hemodynamic response caused by an applied neurological stimulus and captured with fMRI is an indirect measure of neuronal activity that has become the work-horse of modern clinical neuroscience research on brain function. However, interpretation of the signal relative to the underlying molecular/cellular mechanisms responsible for the neurovascular coupling is an active area of investigation, and seemingly contradictory results continue to appear in the literature. Part of the problem is lack of noninvasive imaging options that directly assess local neural activity in the closed cranium, and development of new imaging approaches remains a significant challenge. As described in this project, we have identified a new possibility - functional neuro-poroelastography fNPE) which combines MRI acquisition of cerebrovascular pulsation in the brain with computational methods to estimate spatially localized mechanical and hydrodynamical brain tissue properties. fNPE captures mechano-functional responses of brain tissue and will provide the first spatial maps of its activity based on changes in mechanical properties, noninvasively and without exogenous head stimulation. fNPE is sensitive to multiscale mechanical networks of neural tissue, and thus, will reveal how sensory signals are linked to structural brain adaptation. This fundamentally new information can be added to neuro-computational models of electrical activation, metabolism and structure. We will develop fNPE with nonlinear inversion to yield 3D images of hydraulic conductivity, interstitial pressure and fluid fraction in addition to shear modulus. These results will be compared to a new wideband fMRE approach where images will also be formed through nonlinear inversion but with viscoelastic models. We will define the association of these new MRE methods with brain function using established stimulus protocols. The neuronal network not only transmits electrical signals within the brain, it also provides much of the mechanical scaffold which maintains structure and shape. The mobility of fluid controls the blood flow and ionic gradients required to trigger neuronal activity, but it also attenuates tissue motion and influences the arterial, venous and interstitial pressures within the cranium. Thus, we hypothesize that cerebrovascular flow and related tissue mechanical properties contribute to normal brain function and/or vice versa - brain function modulates cerebral hemodynamics, and concomitantly, brain tissue mechanics. Currently, limited knowledge and understanding exist on in vivo brain mechanics under normal and pathological conditions; yet, MRI methods specific to the mechanical and hydrodynamical properties of the brain, namely MRE techniques, are emerging and preliminary studies relating these properties to brain function are beginning to appear in the literature. Despite recent advances, the neurocomputational model inversion is under-developed in brain MRE, especially if fundamental advances in our understanding of the relationships between brain function and brain mechanical and hydrodynamical properties are to be elucidated. Neuro-computation in MRE, which includes fluid dynamics, poroelasticity and viscoelastic networks may open a new field of study within the framework of neuronal health (and function), which relates mechanical structure with brain tissue function. These developments will also inform models of neuro-degeneration given that the neuronal network is major contributor to the mechanical brain scaffold. This project will solidify an international collaboration in neuro-computational imaging that was recently begun. It will also accelerate realization of new imaging and computational methods for clinical neuroscience research on human brain function, as well as create a computational imaging framework that is applicable to other organ systems and diseases. The international exchange of ideas and expertise will strengthen the research base at the participating institutions and the knowledge of the investigators involved. Both institutions and research teams will have the neuro-computational inversion algorithms along with the MRI sequences required to deliver fNPE studies by the end of the proposed funding period. Graduate students and post-doctoral fellows will not only be trained in advanced MRI and computation methods, but they will also be exposed to and benefit from participating in a multi-disciplinary international collaboration by spending time-in-residenc at each institution.
描述(由申请人提供):由应用神经系统刺激引起的诱发的血液动力学反应并用fMRI捕获是神经元活动的间接度量,它已成为现代临床神经科学对脑功能的工作马。然而,对信号相对于导致神经血管耦合的基本分子/细胞机制的解释是一个活跃的研究领域,看似矛盾的结果在文献中仍然出现。问题的一部分是缺乏直接评估封闭颅骨局部神经活动的无创成像选项,而新成像方法的发展仍然是一个重大挑战。如本项目所述,我们已经确定了一种新的可能性 - 功能性神经弹性造影FNPE),该功能性神经膜片将大脑中的脑血管脉动的获取与计算方法相结合,以估算空间局部的机械和流体动力学脑组织特性。 FNPE捕获了脑组织的机械功能响应,并将基于机械性能的变化,无创,并且没有外源性头部刺激,提供其活性的第一个空间图。 FNPE对神经组织的多尺度机械网络敏感,因此将揭示感觉信号如何与结构性脑适应相关。从根本上讲,这些新信息可以添加到电激活,代谢和结构的神经计算模型中。除剪切模量外,我们还将开发具有非线性反转的FNPE,以产生3D图像,间隙压力,间隙压力和流体分数。这些结果将与一种新的宽带FMRE方法进行比较,其中还将通过非线性反演,但使用粘弹性模型来形成图像。我们将使用已建立的刺激方案来定义这些新的MRE方法与大脑功能的关联。神经元网络不仅传输大脑内的电信号,还提供了许多保持结构和形状的机械支架。流体的迁移率控制着触发神经元活动所需的血流和离子梯度,但它也会减弱组织运动并影响颅骨内动脉,静脉和间质压力。因此,我们假设脑血管流动和相关组织的力学特性有助于正常的大脑功能,反之亦然 - 脑功能调节脑血液动力学,并同时使用脑组织力学。当前,在正常和病理条件下,在体内大脑力学上存在有限的知识和理解。然而,与大脑的机械和流体动力学特性有关的MRI方法,即MRE技术,是新兴的,初步的研究将这些特性与大脑功能有关,开始出现在文献中。尽管有最近的进步,但在大脑MRE中,神经计算模型反演的发展欠发达,尤其是如果我们理解大脑功能与大脑机械和流体动力学之间的关系的基本进步,应阐明。包括流体动力学,毛弹性和粘弹性网络在内的MRE中的神经功能可能会在神经元健康(和功能)的框架内开设一个新的研究领域,该研究将机械结构与脑组织功能有关。考虑到神经元网络是机械脑支架的主要贡献者,这些发展还将为神经脱生模型提供信息。该项目将巩固最近开始的神经计算成像中的国际合作。它还将加速对人脑功能的临床神经科学研究的新成像和计算方法的实现,并创建适用于其他器官系统和疾病的计算成像框架。国际思想和专业知识的交流将加强参与机构的研究基础以及所涉研究者的知识。机构和研究团队都将具有神经计算反转算法以及在拟议的融资期结束之前提供FNPE研究所需的MRI序列。研究生和博士后研究员不仅将接受高级MRI和计算方法的培训,而且他们还将通过在每个机构度过时间居住时间参加多学科国际合作,从而受益匪浅。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient-Based Optimization for Poroelastic and Viscoelastic MR Elastography.
- DOI:10.1109/tmi.2016.2604568
- 发表时间:2017-01
- 期刊:
- 影响因子:10.6
- 作者:Tan L;McGarry MD;Van Houten EE;Ji M;Solamen L;Weaver JB;Paulsen KD
- 通讯作者:Paulsen KD
Cerebral multifrequency MR elastography by remote excitation of intracranial shear waves.
- DOI:10.1002/nbm.3388
- 发表时间:2015-11
- 期刊:
- 影响因子:2.9
- 作者:Fehlner A;Papazoglou S;McGarry MD;Paulsen KD;Guo J;Streitberger KJ;Hirsch S;Braun J;Sack I
- 通讯作者:Sack I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEITH D. PAULSEN其他文献
KEITH D. PAULSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEITH D. PAULSEN', 18)}}的其他基金
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
8840807 - 财政年份:2015
- 资助金额:
$ 11.25万 - 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
9020962 - 财政年份:2015
- 资助金额:
$ 11.25万 - 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
9211221 - 财政年份:2015
- 资助金额:
$ 11.25万 - 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
- 批准号:
8837214 - 财政年份:2014
- 资助金额:
$ 11.25万 - 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
- 批准号:
8738671 - 财政年份:2013
- 资助金额:
$ 11.25万 - 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
- 批准号:
8660174 - 财政年份:2013
- 资助金额:
$ 11.25万 - 项目类别:
Advancing molecular fluorescence-guided surgery platform
先进的分子荧光引导手术平台
- 批准号:
10598545 - 财政年份:2013
- 资助金额:
$ 11.25万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Joint Impacts of Local Alcohol and Cannabis Laws and Outlet Densities on Violence
当地酒精和大麻法律以及销售点密度对暴力的共同影响
- 批准号:
10623297 - 财政年份:2022
- 资助金额:
$ 11.25万 - 项目类别:
Mentoring and Patient Oriented Research at the Nexus of Unhealthy Alcohol Use and HIV
不健康饮酒与艾滋病毒关系的指导和以患者为导向的研究
- 批准号:
10685992 - 财政年份:2022
- 资助金额:
$ 11.25万 - 项目类别:
Joint Impacts of Local Alcohol and Cannabis Laws and Outlet Densities on Violence
当地酒精和大麻法律以及销售点密度对暴力的共同影响
- 批准号:
10557262 - 财政年份:2022
- 资助金额:
$ 11.25万 - 项目类别:
Joint impacts of local alcohol and cannabis policies and outlet densities on violence
当地酒精和大麻政策以及销售点密度对暴力的共同影响
- 批准号:
10152353 - 财政年份:2020
- 资助金额:
$ 11.25万 - 项目类别:
Developing a mobile alcohol biosensor platform for use in medication testing research
开发用于药物测试研究的移动酒精生物传感器平台
- 批准号:
10388196 - 财政年份:2019
- 资助金额:
$ 11.25万 - 项目类别: