X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
基本信息
- 批准号:9552204
- 负责人:
- 金额:$ 33.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-22 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAutomationBehaviorBiologicalBiological ProcessCell physiologyCharacteristicsCommunitiesComplexComplicationComputer softwareCrystallizationDataData AnalysesData CollectionData QualityData SetDescriptorDimensionsDiseaseDrug DesignFoundationsHealthIndividualInternetInvestigationLigand BindingLigandsMapsMeasuresMethodologyMethodsMissionModelingMolecularMorphologic artifactsNoiseOnline SystemsOutcomePharmaceutical PreparationsPhaseProceduresPropertyRadiation-Induced ChangeResearch DesignResearch PersonnelResidual stateRoentgen RaysSamplingSignal TransductionSoftware ToolsSourceSpecimenSpeedStructural ModelsStructureSystemTechniquesTemperatureUncertaintyUnited States National Institutes of HealthValidationWeightWorkX ray diffraction analysisX-Ray Crystallographybasecombinatorialcomputerized data processingdata spacedata structuredesigndetectorelectron densityexperienceexperimental studyinnovationinterestmethod developmentnovelnovel strategiespublic health relevancestructural biologytool
项目摘要
DESCRIPTION (provided by applicant): The proposal "X-ray data analysis in the presence of structural variability" aims to advance diffraction data analysis methods so that the variability between crystals and within crystals is optimally modeled during data processing in reciprocal space and during structural analysis in real space. The significance of the proposed work results from the importance of the technique, which generates uniquely-detailed information. X-ray structures are used to understand cellular processes at the atomic level directly, to explain and validate results obtain by other techniques, to generate hypotheses for detailed studies of cellular process, and to guide drug design studies - all of which are highly relevant to the NIH mission. Macromolecular crystals are frequently of limited size and crystal lattice order. Both may result in the need for combining data from multiple crystals for successful structure solution, with the limited order generating diffraction artifacts and correlating with non-isomorphism between different specimens. Non-isomorphism hinders the averaging of data sets from multiple crystals, because for successful averaging, data need to be very similar. The problems with averaging are compounded by incompleteness of the data in a single data set, radiation-induced changes in the crystal under investigation, and lack of statistical measures that would inform experimenters regarding whether or not the data analysis is progressing in the right direction. There are also technical challenges associated with averaging multiple data sets that result from the combinatorial complexity of data analysis when a large number of data sets need to be analyzed. Final difficulty appears when the analysis of the structural results obtained from multi-crystal experiments must separate the desired biological signals, e.g. the presence of a ligand or a specific dynamic behavior of the molecules, from the noise. Our proposal addresses these problems by developing and implementing innovative approaches. In Aim 1, new approaches will be developed and implemented for averaging multiple, potentially incomplete data sets resulting from one or more crystals. Owing to our innovative approach to modeling the components of non-isomorphism, we expect that even quite non-isomorphous data sets can be used together to solve challenging structures. In Aim 2, methods that will analyze the results of averaging data sets from multiple crystals in real space will be developed. The descriptors of averaging will be correlated with the outcomes of the structural analysis, so that the contributors to variability in real space can be quantified and interpreted. Finally, in Am 3, a web-based server will be developed in order to provide these methods to the structural biology community.
描述(由适用提供):建议“在存在结构变异性的情况下X射线数据分析”旨在推进衍射数据分析方法,以便在互惠空间和实际空间中的结构分析期间在数据处理过程中为晶体和晶体之间的变异性最佳地建模。拟议工作的重要性是由于该技术的重要性而产生了独特的信息。 X射线结构用于直接理解原子水平的细胞过程,以解释和验证其他技术获得的结果,以产生假设,以详细研究细胞过程,并指导药物设计研究 - 所有这些都与NIH任务高度相关。大分子晶体通常具有有限的尺寸和晶体晶格顺序。两者都可能导致需要将来自多个晶体的数据结合起来成功结构解决方案,而有限的顺序产生了衍射工件,并在不同样本之间使用非同态校正。非同态性阻碍了多个晶体的数据集的平均值,因为为了成功平均,数据必须非常相似。平均问题的问题是,单个数据集中的数据不完整,辐射引起的调查晶体变化以及缺乏统计措施,这些统计措施会告知专家有关数据分析是否朝着正确的方向发展。当需要分析大量数据集时,与数据集合的组合复杂性相关的多个数据集也存在技术挑战。当对从多晶体实验获得的结构结果的分析必须分开所需的生物学信号,例如来自噪声的配体或分子的特定动态行为的存在。我们的建议通过开发和实施创新方法来解决这些问题。在AIM 1中,将开发和实施新方法,以平均一个或多个晶体导致的多个可能是不完整的数据集。由于我们对非同态组成部分进行建模的创新方法,我们期望即使是非常非同构的数据集也可以一起使用来解决挑战结构。在AIM 2中,将开发出分析来自真实空间中多个晶体的数据集结果的方法。平均描述符将与结构分析的结果相关,以便可以量化和解释真实空间可变性的贡献者。最后,在AM 3中,将开发基于Web的服务器,以便为结构生物学社区提供这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WLADEK MINOR其他文献
WLADEK MINOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WLADEK MINOR', 18)}}的其他基金
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10019572 - 财政年份:2019
- 资助金额:
$ 33.52万 - 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10432049 - 财政年份:2019
- 资助金额:
$ 33.52万 - 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10200091 - 财政年份:2019
- 资助金额:
$ 33.52万 - 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
- 批准号:
9008644 - 财政年份:2016
- 资助金额:
$ 33.52万 - 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
- 批准号:
9233159 - 财政年份:2016
- 资助金额:
$ 33.52万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9280987 - 财政年份:2015
- 资助金额:
$ 33.52万 - 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
- 批准号:
9147618 - 财政年份:2015
- 资助金额:
$ 33.52万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
8875830 - 财政年份:2015
- 资助金额:
$ 33.52万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9069902 - 财政年份:2015
- 资助金额:
$ 33.52万 - 项目类别:
Centers for High-Throughput Structure Determination
高通量结构测定中心
- 批准号:
8152878 - 财政年份:2010
- 资助金额:
$ 33.52万 - 项目类别:
相似国自然基金
工业自动化与产业升级:影响、机制与政策含义
- 批准号:72173112
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
高度自动化系统对管制员行为影响研究
- 批准号:U1833126
- 批准年份:2018
- 资助金额:34.0 万元
- 项目类别:联合基金项目
提取干扰对内隐记忆的影响及其机制研究
- 批准号:31800906
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
随机离散掺杂对纳米CMOS电路影响的快速Pearson IV统计方法及片上抑制技术
- 批准号:61571171
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
脑力负荷对飞行员信息自动化加工影响及其工效学应用研究
- 批准号:71301005
- 批准年份:2013
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Commercialization Readiness Pilot (CRP) program support for: Direct-from-specimen identification of pathogens common in endocarditis
商业化准备试点 (CRP) 计划支持: 直接从样本鉴定心内膜炎常见病原体
- 批准号:
10758417 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
ShEEP Request for the purchase of a research- grade Cell Imaging Multi-mode Reader
ShEEP 请求购买研究级细胞成像多模式读取器
- 批准号:
10739194 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
- 批准号:
10595446 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
TempO-LINC high throughput high sensitivity single cell gene expression profiling assay Ph II
TempO-LINC 高通量高灵敏度单细胞基因表达谱分析第二阶段
- 批准号:
10699784 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别: