Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
基本信息
- 批准号:8875830
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmic SoftwareAlgorithmsArchivesBiologicalCalibrationCollectionCommunitiesComputer softwareCrystallographyDataData AnalysesData CollectionData SetDatabasesDepositionDetectionDevelopmentDiffuseDisciplineDiseaseEducational workshopEnsureFraudGoalsIceImageImage AnalysisInfectionLeadLearningLibrariesLifeLigandsLinkLocationMetadataMethodsMicroscopicModelingMolecularMorphologic artifactsNetwork-basedOnline SystemsProceduresProcessProteinsProtocols documentationReproducibilityResearchResearch PersonnelResolutionResourcesRoentgen RaysSemanticsSiteSoftware ToolsStructural BiologistStructureSynchrotronsSystemTechnologyTechnology TransferTestingTrainingTwin Multiple BirthValidationVendorWorkX-Ray Crystallographybeamlinebeneficiarycell dimensiondata miningdata reductiondensitydesigndetectorelectron densitygeometric methodologiesheuristicsimprovedmemberpreventprogramspublic health relevancerepositoryresearch studystatisticsstructural biologystructural genomicssyntaxtooltool developmentworking group
项目摘要
DESCRIPTION (provided by applicant): We propose the development of a collection of data wrangling tools to store, parse, manipulate, validate, curate, analyze, and disseminate macromolecular diffraction images together with all associated relevant metadata. The proposed system will have several benefits, by (1) creating a means to improve existing structures as technology for processing diffraction image advances, (2) detecting errors (and potentially, fraud) in existing structures to ensure structure quality and reproducibility, (3) preventing the loss of data collected by structural genomics and other programs that have closed or will close, (4) providing data for analysis of diffuse diffraction effects, and (5) buildng a "training set" for new diffraction analysis algorithms and hardware. Biologists, bioinformaticians,
and software and hardware developers will all be beneficiaries of these tools. The proposed research is designed for semantic rather than syntactic analysis of diffraction images, and has several specific goals. First, we will develop tools for automatically extracting and curating diffraction images and associated metadata, as well as producing descriptions of all data needed for reprocessing when methods for structure determination improve. Second, we will create a web-based system for organizing, searching, analyzing, and data mining of appropriate subsets of diffraction images and associated metadata in machine- readable formats. This will include a comprehensive API for programmatic access, the ability to link multiple instances into a distributed federation, and state-of-the-art compression and transfer technologies. Third, we will develop tools to automatically validate, preprocess, and score diffraction images, and to detect potential issues and errors. These tools will make use of new and existing programs for image and data analysis, contain heuristics to identify possible errors, and provide statistics to correlate errors with specific metadata. Fourth, we will create a mechanism to discover diffraction data that have not yielded X-ray structures with currently available methods. Fifth, we
will set up a pilot resource incorporating all the developed tools, and collect a test data set for
the development of new tools for validation and error detection. We will work closely with multiple collaborators. Most important is the RCSB Protein Data Bank (PDB), who will help us ensure the accuracy and completeness of the diffraction metadata. Other partners will include the diffuse X-ray scattering community, detector vendors, synchrotron beamline managers, members of the IUCr Diffraction Data Deposition Working Group (DDDWG) and the crystallographic community in general. Together with the RCSB PDB, we will organize workshop(s) with these communities in order to (a) improve metadata extraction and (b) better define subsets of diffraction images. By addressing the currently common, irreversible and unnecessary loss of raw diffraction data during the data reduction process, our project helps ensure that the discipline of macromolecular crystallography is capable of continuous self-improvement.
描述(由申请人提供):我们建议开发一组数据整理工具来存储、解析、操作、验证、整理、分析和传播大分子衍射图像以及所有相关的相关元数据。所提出的系统将具有多个优点。 ,通过(1)随着处理衍射图像技术的进步,创建一种改进现有结构的方法,(2)检测现有结构中的错误(以及潜在的欺诈)以确保结构质量和可重复性, (3) 防止结构基因组学和其他已关闭或即将关闭的程序收集的数据丢失,(4) 为漫射衍射效应分析提供数据,以及 (5) 为新的衍射分析算法构建“训练集”和生物学家、生物信息学家、
软件和硬件开发人员都将受益于这些工具。所提出的研究旨在对衍射图像进行语义分析,而不是语法分析,并且有几个具体目标。首先,我们将开发用于自动提取和管理衍射图像及相关元数据的工具。 ,以及当结构确定方法改进时生成重新处理所需的所有数据的描述。 其次,我们将创建一个基于网络的系统,用于组织、搜索、分析和数据挖掘机器中的衍射图像和相关元数据的适当子集。 -这将包括用于编程访问的全面 API、将多个实例链接到分布式联合的能力以及最先进的压缩和传输技术。第三,我们将开发自动验证、预处理和传输的工具。这些工具将利用新的和现有的图像和数据分析程序,包含启发式方法来识别可能的错误,并提供统计数据以将错误与特定元数据关联起来。发现衍射的机制第五,我们还没有利用目前可用的方法产生 X 射线结构的数据。
将建立一个包含所有开发工具的试点资源,并收集测试数据集
我们将与多个合作者密切合作,开发新的验证和错误检测工具。最重要的是 RCSB 蛋白质数据库 (PDB),它将帮助我们确保衍射元数据的准确性和完整性。漫射 X 射线散射社区、探测器供应商、同步加速器光束线管理器、IUCr 衍射数据沉积工作组 (DDDWG) 的成员以及整个晶体学社区与 RCSB PDB 一起。将与这些社区组织研讨会,以便 (a) 改进元数据提取并 (b) 更好地定义衍射图像子集。通过解决数据缩减过程中当前常见的、不可逆的和不必要的原始衍射数据丢失问题,我们的项目有助于确保高分子晶体学学科能够不断自我完善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WLADEK MINOR其他文献
WLADEK MINOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WLADEK MINOR', 18)}}的其他基金
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10019572 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10200091 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
- 批准号:
10432049 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9280987 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
- 批准号:
9147618 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
- 批准号:
9552204 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
- 批准号:
9069902 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
- 批准号:
10601900 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
- 批准号:
10482499 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
- 批准号:
10615864 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别: