Integrated resource for reproducibility in macromolecular crystallography

大分子晶体学重现性的综合资源

基本信息

  • 批准号:
    9280987
  • 负责人:
  • 金额:
    $ 47.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): We propose the development of a collection of data wrangling tools to store, parse, manipulate, validate, curate, analyze, and disseminate macromolecular diffraction images together with all associated relevant metadata. The proposed system will have several benefits, by (1) creating a means to improve existing structures as technology for processing diffraction image advances, (2) detecting errors (and potentially, fraud) in existing structures to ensure structure quality and reproducibility, (3) preventing the loss of data collected by structural genomics and other programs that have closed or will close, (4) providing data for analysis of diffuse diffraction effects, and (5) buildng a "training set" for new diffraction analysis algorithms and hardware. Biologists, bioinformaticians, and software and hardware developers will all be beneficiaries of these tools. The proposed research is designed for semantic rather than syntactic analysis of diffraction images, and has several specific goals. First, we will develop tools for automatically extracting and curating diffraction images and associated metadata, as well as producing descriptions of all data needed for reprocessing when methods for structure determination improve. Second, we will create a web-based system for organizing, searching, analyzing, and data mining of appropriate subsets of diffraction images and associated metadata in machine- readable formats. This will include a comprehensive API for programmatic access, the ability to link multiple instances into a distributed federation, and state-of-the-art compression and transfer technologies. Third, we will develop tools to automatically validate, preprocess, and score diffraction images, and to detect potential issues and errors. These tools will make use of new and existing programs for image and data analysis, contain heuristics to identify possible errors, and provide statistics to correlate errors with specific metadata. Fourth, we will create a mechanism to discover diffraction data that have not yielded X-ray structures with currently available methods. Fifth, we will set up a pilot resource incorporating all the developed tools, and collect a test data set for the development of new tools for validation and error detection. We will work closely with multiple collaborators. Most important is the RCSB Protein Data Bank (PDB), who will help us ensure the accuracy and completeness of the diffraction metadata. Other partners will include the diffuse X-ray scattering community, detector vendors, synchrotron beamline managers, members of the IUCr Diffraction Data Deposition Working Group (DDDWG) and the crystallographic community in general. Together with the RCSB PDB, we will organize workshop(s) with these communities in order to (a) improve metadata extraction and (b) better define subsets of diffraction images. By addressing the currently common, irreversible and unnecessary loss of raw diffraction data during the data reduction process, our project helps ensure that the discipline of macromolecular crystallography is capable of continuous self-improvement.
 描述(由适用提供):我们建议开发一系列数据包装工具,用于存储,解析,操纵,验证,策划,策展人,分析和分发大分子分子衍射图像以及所有相关的相关元数据。 The proposed system will have several benefits, by (1) creating a means to improve existing structures as technology for processing diffraction image advances, (2) detecting errors (and potentially, fraud) in existing structures to Ensure structure quality and reproducibility, (3) preventing the loss of data collected by structural genomics and other programs that have closed or will close, (4) providing data for analysis of diffuse diffraction effects, and (5) buildng a "training设置“用于新的衍射分析算法和硬件。生物学家,生物信息学家, 软件和硬件开发人员将对这些工具的所有收益。拟议的研究设计用于衍射图像的语义而不是句法分析,并且具有多个特定目标。首先,我们将开发用于自动提取和策划衍射图像和相关元数据的工具,并在结构确定方法改善时对重新处理所需的所有数据进行描述。其次,我们将创建一个基于Web的系统,用于组织,搜索,分析和数据挖掘衍射图像的适当子集和机器可读格式中相关的元数据。这将包括用于程序化访问的全面API,将多个实例链接到分布式联合会以及最新的压缩和转移技术的能力。第三,我们将开发自动验证,预处理和评分衍射图像并检测潜在问题和错误的工具。这些工具将利用新的和现有的程序进行图像和数据分析,包含启发式方法以识别可能的错误,并提供统计信息以将错误与特定的元数据相关联。第四,我们将创建一种机制,以发现尚未产生X射线结构的衍射数据。第五,我们 将设置一个编码所有开发工具的飞行员资源,并为 开发用于验证和错误检测的新工具。我们将与多个合作者紧密合作。最重要的是RCSB蛋白数据库(PDB),他们将帮助我们确保衍射元数据的准确性和完整性。其他合作伙伴将包括弥漫性X射线散射社区,检测器供应商,同步梁线经理,IUCR衍射数据沉积工作组(DDDWG)的成员以及一般的晶体学界。与RCSB PDB一起,我们将与这些社区一起组织研讨会,以(a)改善元数据提取,(b)更好地定义衍射图像的子集。通过解决当前常见的,不可逆的和不必要的原始衍射数据丢失,我们的项目有助于确保大分子晶体学的学科能够连续自我提高。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CheckMyMetal: a macromolecular metal-binding validation tool.
Detect, correct, retract: How to manage incorrect structural models.
  • DOI:
    10.1111/febs.14320
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wlodawer A;Dauter Z;Porebski PJ;Minor W;Stanfield R;Jaskolski M;Pozharski E;Weichenberger CX;Rupp B
  • 通讯作者:
    Rupp B
Characterizing metal-binding sites in proteins with X-ray crystallography.
  • DOI:
    10.1038/nprot.2018.018
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    14.8
  • 作者:
    Handing KB;Niedzialkowska E;Shabalin IG;Kuhn ML;Zheng H;Minor W
  • 通讯作者:
    Minor W
A close look onto structural models and primary ligands of metallo-β-lactamases.
Correcting the record of structural publications requires joint effort of the community and journal editors.
  • DOI:
    10.1111/febs.13765
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rupp B;Wlodawer A;Minor W;Helliwell JR;Jaskolski M
  • 通讯作者:
    Jaskolski M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WLADEK MINOR其他文献

WLADEK MINOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WLADEK MINOR', 18)}}的其他基金

Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10019572
  • 财政年份:
    2019
  • 资助金额:
    $ 47.19万
  • 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10200091
  • 财政年份:
    2019
  • 资助金额:
    $ 47.19万
  • 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10432049
  • 财政年份:
    2019
  • 资助金额:
    $ 47.19万
  • 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
  • 批准号:
    9233159
  • 财政年份:
    2016
  • 资助金额:
    $ 47.19万
  • 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
  • 批准号:
    9008644
  • 财政年份:
    2016
  • 资助金额:
    $ 47.19万
  • 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
  • 批准号:
    9147618
  • 财政年份:
    2015
  • 资助金额:
    $ 47.19万
  • 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
  • 批准号:
    8875830
  • 财政年份:
    2015
  • 资助金额:
    $ 47.19万
  • 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
  • 批准号:
    9552204
  • 财政年份:
    2015
  • 资助金额:
    $ 47.19万
  • 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
  • 批准号:
    9069902
  • 财政年份:
    2015
  • 资助金额:
    $ 47.19万
  • 项目类别:
Centers for High-Throughput Structure Determination
高通量结构测定中心
  • 批准号:
    8152878
  • 财政年份:
    2010
  • 资助金额:
    $ 47.19万
  • 项目类别:

相似国自然基金

特征投影分解技术在最优控制模型中的快速算法分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向安全多方计算的对称密码算法分析与设计
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G及后5G的序列密码算法分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习算法分析胸部CT构建原发肺癌脑转移风险模型
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
两相铁磁流体模型、算法、分析及模拟
  • 批准号:
    12171415
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 47.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 47.19万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 47.19万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 47.19万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 47.19万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了