Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries

人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发

基本信息

  • 批准号:
    10019572
  • 负责人:
  • 金额:
    $ 56.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-17 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Our current understanding of the molecular mechanisms of disease and structure-based design of drugs for treatment, rely on experimentally determined 3D structures of proteins and other macromolecules complexed with small molecule ligands. Many of these structures have direct relevance to public health, especially complexes of drug targets with drugs, inhibitors, substrates, or allosteric effectors. Yet, structure-based drug discovery is severely complicated and hindered by experimental bias and the shortcomings of current methods of experimental ligand identification, which often result in misidentified, missing, or misplaced ligands. The propagation of erroneous structures combined with an increased accessibility to structural data not only thwarts reproducibility in biomedical research and drug discovery, but also diverts valuable resources down doomed research avenues. We will leverage our extensive experience validating and refining ligand binding sites to generate ligand reference libraries that will be made publically available on a new web resource dedicated to the interaction of small molecules and macromolecules. These libraries can be used in many downstream applications, such as drug design, computational chemistry, biology, and bioinformatics. We will utilize recent technological advances in machine learning in conjunction with existing tools to create a standardized protocol for density interpretation and unbiased, reproducible ligand identification. This pipeline will not only be able identify and model ligands in unassigned density fragments, but also be able to detect and correct suboptimally refined ligands in existing structures. As the proposed AI will be free from cognitive bias, it should alleviate the most severe problems in structure-based drug design. Because improperly interpreted structures can have a significant deleterious ripple effect, we will experimentally verify select biomedically important structures with dubious experimental support for critical small molecules using use X-ray crystallography or electron microscopy.
我们目前对疾病分子机制和基于结构的设计的理解 用于治疗的药物,依赖于通过实验确定的蛋白质和其他物质的 3D 结构 大分子与小分子配体复合。其中许多结构都直接 与公共卫生的相关性,特别是药物靶标与药物、抑制剂、底物的复合物, 或变构效应器。然而,基于结构的药物发现非常复杂且受到阻碍 由实验偏差和现有实验配体方法的缺点 识别,这通常会导致配体错误识别、缺失或错位。传播 不仅消除了错误结构,而且增加了对结构数据的可访问性 阻碍生物医学研究和药物发现的可重复性,但也转移了宝贵的 资源注定会被限制在研究道路上。我们将利用丰富的经验来验证 并精炼配体结合位点以生成将公开的配体参考库 可在专门研究小分子相互作用的新网络资源上找到 大分子。这些库可用于许多下游应用,例如药物 设计、计算化学、生物学和生物信息学。我们将利用最近的 机器学习的技术进步与现有工具相结合,创建了 密度解释和公正、可重复配体的标准化方案 鉴别。该管道不仅能够识别和建模未指定密度的配体 片段,而且还能够检测和纠正现有的次优精炼配体 结构。由于拟议的人工智能将不会出现认知偏差,因此它应该可以缓解最严重的问题 基于结构的药物设计中的问题。因为不正确解释的结构可能会产生 显着的有害连锁反应,我们将通过实验验证选择生物医学上重要的 使用 X 射线对关键小分子进行可疑实验支持的结构 晶体学或电子显微镜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WLADEK MINOR其他文献

WLADEK MINOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WLADEK MINOR', 18)}}的其他基金

Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10432049
  • 财政年份:
    2019
  • 资助金额:
    $ 56.12万
  • 项目类别:
Reproducible, Unbiased Ligand Identification Assisted by Artificial Intelligence and Development of Ligand Reference Libraries
人工智能辅助的可重复、公正的配体鉴定和配体参考文库的开发
  • 批准号:
    10200091
  • 财政年份:
    2019
  • 资助金额:
    $ 56.12万
  • 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
  • 批准号:
    9008644
  • 财政年份:
    2016
  • 资助金额:
    $ 56.12万
  • 项目类别:
Metal binding sites in macromolecular structures
大分子结构中的金属结合位点
  • 批准号:
    9233159
  • 财政年份:
    2016
  • 资助金额:
    $ 56.12万
  • 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
  • 批准号:
    9280987
  • 财政年份:
    2015
  • 资助金额:
    $ 56.12万
  • 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
  • 批准号:
    9147618
  • 财政年份:
    2015
  • 资助金额:
    $ 56.12万
  • 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
  • 批准号:
    8875830
  • 财政年份:
    2015
  • 资助金额:
    $ 56.12万
  • 项目类别:
X-ray data analysis in the presence of structural variability
存在结构变异时的 X 射线数据分析
  • 批准号:
    9552204
  • 财政年份:
    2015
  • 资助金额:
    $ 56.12万
  • 项目类别:
Integrated resource for reproducibility in macromolecular crystallography
大分子晶体学重现性的综合资源
  • 批准号:
    9069902
  • 财政年份:
    2015
  • 资助金额:
    $ 56.12万
  • 项目类别:
Centers for High-Throughput Structure Determination
高通量结构测定中心
  • 批准号:
    8152878
  • 财政年份:
    2010
  • 资助金额:
    $ 56.12万
  • 项目类别:

相似海外基金

The Center for Innovation and Translation of Point of Care Technologies for Equitable Cancer Care (CITEC) - Administrative Core
公平癌症护理护理点技术创新与转化中心 (CITEC) - 行政核心
  • 批准号:
    10715741
  • 财政年份:
    2023
  • 资助金额:
    $ 56.12万
  • 项目类别:
Revealing the role of blood microbiome in childhood asthma
揭示血液微生物组在儿童哮喘中的作用
  • 批准号:
    10590805
  • 财政年份:
    2023
  • 资助金额:
    $ 56.12万
  • 项目类别:
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
  • 批准号:
    10713424
  • 财政年份:
    2023
  • 资助金额:
    $ 56.12万
  • 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10371559
  • 财政年份:
    2022
  • 资助金额:
    $ 56.12万
  • 项目类别:
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
  • 批准号:
    10557007
  • 财政年份:
    2022
  • 资助金额:
    $ 56.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了