A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
基本信息
- 批准号:9169717
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-20 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAmericanAnimal ModelBiomedical EngineeringBiomimeticsCell SurvivalCell physiologyCellsCellular StructuresCellular biologyCommunitiesDevelopmentDevelopmental Cell BiologyDevicesDiabetes MellitusDirect CostsDiseaseDisease modelEndocrineEventExposure toFacilities and Administrative CostsFailureFunctional disorderGlucoseGoalsHealthHumanImmuneIn VitroInsulinInsulin-Dependent Diabetes MellitusIntestinesIslets of LangerhansLeadLiquid substanceMaintenanceMethodsModelingMoldsMolecularMusOrganoidsPatientsPerformancePhenotypePhysiologyPopulationPositioning AttributeProductionProtocols documentationRodentSourceStagingStem cellsSystemTissuesdesigndiabetes mellitus therapyexperiencein vivoinduced pluripotent stem cellinnovationisletnovelportabilityprogenitorprogramsreconstitutionscaffoldsuccesstool
项目摘要
DESCRIPTION: The goals of our proposal are to bring together an expert team of bioengineers and stem cell/developmental biologists to create a Human Islet Biomimetic that will facilitate (i) long term culture and manipulation of human islets and (ii) maturation of stem-cell derived or reprogrammed islets. Specifically, we will combine our expertise in cell and developmental biology with our experience molding three dimensional vascularized scaffolds in which cellular inputs, matrix composition, and microscale organization (including flow) can be varied with precision. Although much is known about islet function under homeostatic conditions in vivo, current methods for studying islet physiology and pathophysiology are severely limited. Studies that rely on model organisms - particularly mice - are hampered by cellular and molecular discrepancies between human and rodent islets. The use of human islets for studies of islet physiology is also problematic, as limited availability and exposure to non-physiological conditions during isolation impede the use of this cellular source. Most importantly, there is no system currently available which supports the full function of islets or b-cells for more than a fe days in culture. Thus, our understanding of islet function and dysfunction - particularly as it relates to type 1 diabetes (T1D) - has been constrained by the lack of tools for maintaining and studying human islets in vitro. Into this gap, we will take cadaveric human islets, pancreatic progenitors from human ES and iPS cells, and endocrine cells that are trans-differentiated from intestinal stem cells as starting material, and incorporate them into innovative scaffold devices that provide control over local structure, cellular content, and fluid dynamics to stabilize b-cell
function. Overall, we plan to reconstitute human islet biomimetics that recapitulate the diverse cellular types and their organization within the natural human islet. In addition, we will use the system to explore the reasons why islets are prone to lose function when placed ex vivo and to model human islet diseases. This system will be critical for the success of other HIRN consortia, as well for the b-cell biology community at large by providing an accessory system for studying b-cell survival, immune interactions, and alternate sources of b-cells. Our Aims are as follows: Aim 1: To establish a human islet biomimetic for sustained islet viability and function in vitro. Aim 2: To optimize human islet biomimetic function with respect to glucose sensing, insulin release, and stable maintenance of islet phenotypes. Our study is designed to provide a deeper understanding of the molecular and cellular events that lead to islet dysfunction in T1D and related islet disorders and to help develop strategies to restore normal islet function in these disorders.
描述:我们提案的目标是汇集生物工程师和干细胞/发育生物学家的专家团队,创建一种人类胰岛仿生学,它将促进(i)人类胰岛的长期培养和操作以及(ii)干细胞的成熟。具体来说,我们将把我们在细胞和发育生物学方面的专业知识与我们塑造三维血管化支架的经验相结合,其中细胞输入、基质组成和微观组织(包括流动)可以被结合起来。尽管人们对体内稳态条件下的胰岛功能了解很多,但目前研究胰岛生理学和病理生理学的方法受到人类和啮齿动物胰岛之间细胞和分子差异的严重限制,尤其是小鼠。用于胰岛生理学研究的人类胰岛也存在问题,因为有限的可用性和在分离过程中暴露于非生理条件阻碍了这种细胞来源的使用。最重要的是,目前没有可用的系统支持该细胞来源。因此,我们对胰岛功能和功能障碍的理解,特别是与 1 型糖尿病 (T1D) 相关的知识,由于缺乏维持和功能的工具而受到限制。为了在体外研究人类胰岛,我们将以人类尸体胰岛、来自人类 ES 和 iPS 细胞的胰腺祖细胞以及从肠干细胞转分化的内分泌细胞作为起始材料,并将其纳入其中。将它们转化为创新的支架装置,可控制局部结构、细胞内容和流体动力学,以稳定 b 细胞
总体而言,我们计划重建人类胰岛仿生体,以重现自然人类胰岛中的不同细胞类型及其组织。此外,我们将使用该系统来探索胰岛在离体和体外放置时容易丧失功能的原因。该系统为研究 b 细胞存活、免疫相互作用和替代来源提供了辅助系统,对于其他 HIRN 联盟以及整个 b 细胞生物学界的成功至关重要。我们的目标如下: 目标 1:建立一种具有持续胰岛活力和体外功能的人体胰岛仿生体。 目标 2:优化人体胰岛仿生体在葡萄糖传感、胰岛素释放和稳定维持方面的功能。我们的研究旨在更深入地了解导致 T1D 和相关胰岛疾病中胰岛功能障碍的分子和细胞事件,并帮助制定恢复这些疾病中正常胰岛功能的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER S CHEN其他文献
CHRISTOPHER S CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER S CHEN', 18)}}的其他基金
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
- 批准号:
10376043 - 财政年份:2020
- 资助金额:
$ 7.2万 - 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
- 批准号:
10589122 - 财政年份:2020
- 资助金额:
$ 7.2万 - 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
- 批准号:
10152652 - 财政年份:2020
- 资助金额:
$ 7.2万 - 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
- 批准号:
10189655 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
- 批准号:
10441311 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
- 批准号:
10654551 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
- 批准号:
8813707 - 财政年份:2014
- 资助金额:
$ 7.2万 - 项目类别:
2010 Signal Transduction By Engineered Extracellular Matrices; Gordon Research Co
2010 工程细胞外基质的信号转导;
- 批准号:
7905520 - 财政年份:2010
- 资助金额:
$ 7.2万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Integrating Tailored Postoperative Opioid Tapering and Pain Management Support for Patients on Long-Term Opioid Use Presenting for Spine Surgery (MIRHIQL)
为脊柱手术中长期使用阿片类药物的患者整合定制的术后阿片类药物逐渐减量和疼痛管理支持 (MIRHIQL)
- 批准号:
10722943 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
- 批准号:
10561356 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Adapting and Implementing a Nurse Care Management Model to Care for Rural Patients with Chronic Pain
适应和实施护理管理模式来护理农村慢性疼痛患者
- 批准号:
10741606 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别: