Notch signaling and adhesion regulation

Notch信号传导和粘附调节

基本信息

项目摘要

Project Description and Summary The goal of this proposal is to characterize a new mechanism by which the Notch receptor regulates changes in cell adhesion dynamics. Notch signaling is highly conserved across the animal kingdom to regulate cell fates during development, and its dysregulation has been implicated in a variety of vascular inflammatory diseases, developmental abnormalities, and cancers. Binding of ligand to Notch receptor leads to proteolytic cleavages that release the intracellular domain (ICD) as a transcriptional activator, and this mechanism has been the primary focus in describing the role of Notch in development and disease. The investigator has recently found that shear stress caused by blood flow activates Notch, which in turn leads to rapid assembly of endothelial cell-cell junctions and heightened barrier function. In this work, they demonstrated that the transmembrane domain (TMD) left behind after Notch proteolysis initiates the formation of a cortical signaling complex that is responsible for stimulating junction assembly. Here, the investigator will identify the components, underlying mechanisms, and cellular impact of this previously unappreciated non-transcriptional, cortical pathway for Notch and elucidate the biological contexts in which this pathway is engaged. These objectives will be achieved through an interdisciplinary program built around three Aims: Specific Aim 1 will be to define mechanisms underlying the non-canonical cortical Notch signaling pathway. Specific Aim 2 will examine crosstalk between adhesion, force, and the cortical Notch signaling pathway. Specific Aim 3 will be to explore the extent to which the cortical Notch pathway generalizes to broader biological contexts. Together, these studies will offer important insights into this new arm of Notch signaling, and provide a molecular basis for how transcriptional and adhesive programs might be coordinated by a single receptor.
项目描述和总结 该提案的目标是描述一种新机制,通过该机制,Notch 受体调节细胞粘附动力学的变化。 Notch信号传导高度保守 整个动物界在发育过程中调节细胞命运,其失调已 与多种血管炎症性疾病、发育异常、 和癌症。配体与Notch受体的结合导致蛋白水解裂解,从而释放 细胞内结构域(ICD)作为转录激活剂,这种机制已被 主要重点描述Notch在发育和疾病中的作用。调查员有 最近发现,血流引起的剪切应力会激活Notch,进而导致 内皮细胞-细胞连接的快速组装和增强的屏障功能。在这项工作中, 他们证明了Notch蛋白水解后留下的跨膜结构域(TMD) 启动负责刺激连接的皮质信号复合物的形成 集会。在这里,研究者将识别组件、潜在机制和 这种以前未被认识到的 Notch 非转录皮质通路对细胞的影响 并阐明该途径所涉及的生物学背景。这些目标将是 通过围绕三个目标建立的跨学科计划来实现: 具体目标 1 将是 定义非典型皮质 Notch 信号通路的潜在机制。具体目标 图 2 将检查粘附、力和皮质 Notch 信号通路之间的串扰。 具体目标 3 是探索皮质 Notch 通路推广到的程度 更广泛的生物学背景。总之,这些研究将为这一新的研究提供重要的见解。 Notch 信号传导臂,并为转录和粘附的方式提供分子基础 程序可能由单个受体协调。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER S CHEN其他文献

CHRISTOPHER S CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER S CHEN', 18)}}的其他基金

Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
  • 批准号:
    10376043
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
  • 批准号:
    10589122
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
  • 批准号:
    10152652
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
Notch signaling and adhesion regulation
Notch信号传导和粘附调节
  • 批准号:
    10450753
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10189655
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10441311
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10654551
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
  • 批准号:
    9169717
  • 财政年份:
    2014
  • 资助金额:
    $ 41.25万
  • 项目类别:
A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
  • 批准号:
    8813707
  • 财政年份:
    2014
  • 资助金额:
    $ 41.25万
  • 项目类别:
2010 Signal Transduction By Engineered Extracellular Matrices; Gordon Research Co
2010 工程细胞外基质的信号转导;
  • 批准号:
    7905520
  • 财政年份:
    2010
  • 资助金额:
    $ 41.25万
  • 项目类别:

相似国自然基金

上皮层形态发生过程中远程机械力传导的分子作用机制
  • 批准号:
    31900563
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
  • 批准号:
    31701215
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Notch signaling and adhesion regulation
Notch信号传导和粘附调节
  • 批准号:
    10450753
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
Development of forebrain organoid platform for modelling human cortical neurogenesis
开发用于模拟人类皮质神经发生的前脑类器官平台
  • 批准号:
    9122502
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:
Cell-Matrix Interactions in Epithelial Polarization
上皮极化中的细胞-基质相互作用
  • 批准号:
    7217382
  • 财政年份:
    2006
  • 资助金额:
    $ 41.25万
  • 项目类别:
Cell-Matrix Interactions in Epithelial Polarization
上皮极化中的细胞-基质相互作用
  • 批准号:
    7446083
  • 财政年份:
    2006
  • 资助金额:
    $ 41.25万
  • 项目类别:
The novel adhesion molecule Bves and corneal healing
新型粘附分子 Bves 与角膜愈合
  • 批准号:
    7616736
  • 财政年份:
    2006
  • 资助金额:
    $ 41.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了