Development of forebrain organoid platform for modelling human cortical neurogenesis
开发用于模拟人类皮质神经发生的前脑类器官平台
基本信息
- 批准号:9122502
- 负责人:
- 金额:$ 5.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2016-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherens JunctionAdherent CultureAffectAnimal ModelApicalBiological ProcessBioreactorsBrainBrain DiseasesBrain StemCell Culture TechniquesCellsCerebral cortexCerebrumCopy Number PolymorphismCulture MediaDNA Sequence AlterationDevelopmentDiseaseDisease modelEmbryoEpilepsyEpileptogenesisEventFibroblastsForebrain DevelopmentFutureGeneralized EpilepsyGenerationsGlutamatesGoalsGrowthHealthHeterogeneityHumanHuman DevelopmentHuman EngineeringIncubatorsIntestinesInvestigationKidneyLaboratoriesLifeMental disordersMethodologyMethodsMidbrain structureModelingMolecularMusNamesNervous system structureNeuroepithelialNeurogliaNeuronsNutrientOrganOrganogenesisOrganoidsOxygenPatientsPluripotent Stem CellsPositioning AttributePreclinical Drug EvaluationPredispositionPrimatesProductionPropertyProsencephalonProtocols documentationRadialReplacement TherapyReportingReproducibilityRetinalRiskRodentRoleSamplingSchizophreniaSeizuresSignal TransductionSkinSomatic CellStem Cell ResearchStem cellsStructureSystemTechnologyTestingTherapeuticTissuesVariantWorkabsorptionbasebiological systemscell assemblycell typecellular developmentcostdrug testingfrontiergenetic risk factorgenome editinghuman diseaseimprovedin vivoinduced pluripotent stem cellinsightmalformationmicrodeletionminiaturizemouse modelnerve stem cellneurodevelopmentneurogenesisnovelnovel strategiesorgan growthpluripotencyprototyperelating to nervous systemself assemblystem cell differentiationsynaptic functiontechnology developmentthree dimensional cell culture
项目摘要
DESCRIPTION (provided by applicant): A major breakthrough in the stem cell field over the last decade has been the development of technology to reprogram human somatic cells into induced pluripotent stem cells or iPSCs. In addition to the ability to derive specific cell types from human iPSCs in dish as 2D cultures, rapid progress in the field has made it possible to generate 3D cultures, or organoids, from iPSCs resembling whole developing organs, including intestinal, kidney, retinal, and cerebral cortex. Human organoids provide a unique opportunity to model organ development in a culture system that is similar to human organogenesis in vivo. Furthermore, organoid cultures provide the opportunity to model diseases that affect multiple cell types and to investigate non-cell- autonomous effects. The work in my laboratory focuses on neural development using both mouse models and iPSC models; and our long term goal is to understand mechanisms underlying normal brain development, neurodevelopmental diseases and to aid in the development of rational therapeutic strategies. Despite the tremendous promise of cerebral organoids to model brain genesis and brain diseases, there are several major limitations of the currently available technology, including high cost, low reproducibility and high variability, that limit our ability for quantitative analyses and broad application of the
technology. We have recently developed a new approach by miniaturizing the critical components used to generate cerebral organoids, which allows for a dramatic reduction in materials, cell culture media, space and costs. In this exploratory project, we propose to further standardize forebrain specific organoid production and optimize cell culture conditions for directed and sustained growth. As a proof-of-principle, we will use this system to test the hypothesis that 15q11.2 microdeletion, a prominent genetic risk factor for epilepsy, leads to aberrant cortical neurogenesis for seizure susceptibility. We believe that our approach will transform organogenesis modeling and facilitate the identification of disease-relevant biological processes that are difficult to recapitulate in 2D monolayer cultures.
描述(由申请人提供):过去十年干细胞领域的重大突破是除了能够从人类衍生特定细胞类型之外,还开发了将人类体细胞重编程为诱导性多能干细胞或 iPSC 的技术。培养皿中的 iPSC 作为 2D 培养物,该领域的快速进展使得从类似于整个发育器官的 iPSC 生成 3D 培养物或类器官成为可能,包括肠、肾、视网膜和人类类器官提供了在类似于体内人体器官发生的培养系统中模拟器官发育的独特机会,此外,类器官培养物还提供了模拟影响多种细胞类型的疾病和研究非细胞自主效应的机会。我实验室的工作重点是使用小鼠模型和 iPSC 模型进行神经发育;我们的长期目标是了解正常大脑发育、神经发育疾病的机制,并帮助制定合理的治疗策略,尽管脑神经发展前景广阔。模拟大脑起源和大脑的类器官疾病,目前可用技术存在几个主要局限性,包括成本高、重现性低和变异性大,限制了我们进行定量分析和广泛应用的能力
我们最近开发了一种新方法,通过微型化用于生成大脑类器官的关键组件,可以大幅减少材料、细胞培养基、空间和成本。在这个探索性项目中,我们建议进一步标准化前脑特定类器官。作为原理验证,我们将使用该系统来测试 15q11.2 微缺失(一个重要的遗传风险因素)的假设。我们相信,我们的方法将改变器官发生模型,并有助于识别难以在 2D 单层培养物中重现的疾病相关生物过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guo-li Ming其他文献
Guo-li Ming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guo-li Ming', 18)}}的其他基金
Loss-of-Function Analyses of SETD1A in Human Neural Models
人类神经模型中 SETD1A 的功能丧失分析
- 批准号:
10436993 - 财政年份:2021
- 资助金额:
$ 5.06万 - 项目类别:
Loss-of-Function Analyses of SETD1A in Human Neural Models
人类神经模型中 SETD1A 的功能丧失分析
- 批准号:
10616753 - 财政年份:2021
- 资助金额:
$ 5.06万 - 项目类别:
Loss-of-Function Analyses of SETD1A in Human Neural Models
人类神经模型中 SETD1A 的功能丧失分析
- 批准号:
10298406 - 财政年份:2021
- 资助金额:
$ 5.06万 - 项目类别:
Engineering a human brain organoid-based platform to study neurotropic viruses
设计一个基于人脑类器官的平台来研究嗜神经病毒
- 批准号:
9913453 - 财政年份:2017
- 资助金额:
$ 5.06万 - 项目类别:
Deconstructing the hypothalmic ontogeny and plasticity via clonal analysis
通过克隆分析解构下丘脑个体发育和可塑性
- 批准号:
9592762 - 财政年份:2017
- 资助金额:
$ 5.06万 - 项目类别:
Engineering a human brain organoid-based platform to study neurotropic viruses
设计一个基于人脑类器官的平台来研究嗜神经病毒
- 批准号:
9461004 - 财政年份:2017
- 资助金额:
$ 5.06万 - 项目类别:
Functional roles of genetic risk factors for brain disorders in neurogenesis and neurodevelopment
脑部疾病遗传危险因素在神经发生和神经发育中的功能作用
- 批准号:
10308075 - 财政年份:2016
- 资助金额:
$ 5.06万 - 项目类别:
Deconstructing the hypothalmic ontogeny and plasticity via clonal analysis
通过克隆分析解构下丘脑个体发育和可塑性
- 批准号:
9126774 - 财政年份:2016
- 资助金额:
$ 5.06万 - 项目类别:
Functional roles of genetic risk factors for brain disorders in neurogenesis and neurodevelopment
脑部疾病遗传危险因素在神经发生和神经发育中的功能作用
- 批准号:
10682977 - 财政年份:2016
- 资助金额:
$ 5.06万 - 项目类别:
Functional roles of genetic risk factors for brain disorders in neurogenesis and neurodevelopment
脑部疾病遗传危险因素在神经发生和神经发育中的功能作用
- 批准号:
10065021 - 财政年份:2016
- 资助金额:
$ 5.06万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cell-Matrix Interactions in Epithelial Polarization
上皮极化中的细胞-基质相互作用
- 批准号:
7217382 - 财政年份:2006
- 资助金额:
$ 5.06万 - 项目类别:
Cell-Matrix Interactions in Epithelial Polarization
上皮极化中的细胞-基质相互作用
- 批准号:
7446083 - 财政年份:2006
- 资助金额:
$ 5.06万 - 项目类别:
The novel adhesion molecule Bves and corneal healing
新型粘附分子 Bves 与角膜愈合
- 批准号:
7616736 - 财政年份:2006
- 资助金额:
$ 5.06万 - 项目类别: