Local Regulation of Angiogenesis by Microenvironment

微环境对血管生成的局部调节

基本信息

项目摘要

Project Description and Summary The vascularization of engineered tissues is critical to the ultimate success of tissue engineering as an organ replacement therapy. The formation of new capillary vessels from existing vasculature, or angiogenesis, also is linked to the pathogenesis of numerous diseases including cancer, and is regulated by local cues within the tissue microenvironment. The general goal of this renewal project is to understand the mechanism by which local extracellular matrix (ECM) properties regulate endothelial cell invasion and sprout morphogenesis required in angiogenesis, and to use these insights to guide design of biomaterials to enhance angiogenesis for clinically relevant applications. The investigator has found that adhesion to ECM generates not only biochemical, but also mechanical signals that are important in driving endothelial cell function. Preliminary studies from the investigator suggest that ECM stiffness, adhesiveness, and degradability could be used to regulate the angiogenic invasion process through such materials by modulating key signaling pathways regulating the actin cytoskeleton. In this proposal, the investigator proposes to further investigate the role of these ECM cues in regulating angiogenic behaviors. The project proposes to develop biomaterials to investigate the contributions of different matrix properties and their cooperation in regulating angiogenesis using both in vitro and in vivo models, and to examine the morphodynamics of developing vasculature within those materials. The investigator will examine whether these materials can be used to control the architecture of angiogenic vessels. Together, these studies will define the mechanisms by which local structural and mechanical properties within ECM modulate endothelial cell function and capillary morphogenesis, and establish new biomaterials design strategies to promote angiogenesis in ex-vivo engineered tissues as well as native ischemic tissues.
项目描述和摘要 工程组织的血管化对于组织的最终成功至关重要 工程作为器官替代疗法。新毛细管的形成 来自现有的脉管系统或血管生成,也与 包括癌症在内的许多疾病,受组织内的局部线索调节 微环境。这个更新项目的一般目标是了解 局部细胞外基质(ECM)特性调节内皮细胞的机制 血管生成需要入侵和发芽形态发生,并使用这些见解 指导生物材料的设计以增强临床相关的血管生成 申请。研究人员发现,对ECM的粘附不仅会产生 生化,但在驱动内皮细胞中很重要的机械信号 功能。研究人员的初步研究表明ECM刚度, 粘附性和降解性可用于调节血管生成侵袭 通过调节调节关键信号通路来通过此类材料进行处理 肌动蛋白细胞骨架。在该提案中,研究人员提议进一步调查 这些ECM提示在调节血管生成行为中的作用。该项目提议 开发生物材料来研究不同基质特性的贡献和 它们在使用体外和体内模型以及 检查这些材料中发展脉管系统的形态动力学。这 研究人员将检查这些材料是否可以用于控制 血管生成血管的结构。这些研究将共同​​定义机制 ECM内的局部结构和机械性能调节内皮 细胞功能和毛细血管形态发生,并建立新的生物材料设计 促进前体工程组织中血管生成的策略以及天然 缺血组织。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

CHRISTOPHER S CHEN的其他基金

Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
  • 批准号:
    10589122
    10589122
  • 财政年份:
    2020
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
  • 批准号:
    10152652
    10152652
  • 财政年份:
    2020
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Notch signaling and adhesion regulation
Notch信号传导和粘附调节
  • 批准号:
    10164623
    10164623
  • 财政年份:
    2019
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Notch signaling and adhesion regulation
Notch信号传导和粘附调节
  • 批准号:
    10450753
    10450753
  • 财政年份:
    2019
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10189655
    10189655
  • 财政年份:
    2019
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10441311
    10441311
  • 财政年份:
    2019
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Synthetic Biology and Biotechnology (SB2) Predoctoral Training Program
合成生物学与生物技术(SB2)博士前培训项目
  • 批准号:
    10654551
    10654551
  • 财政年份:
    2019
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
  • 批准号:
    9169717
    9169717
  • 财政年份:
    2014
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
A vascularized 3D biomimetic for islet function and physiology
用于胰岛功能和生理学的血管化 3D 仿生模型
  • 批准号:
    8813707
    8813707
  • 财政年份:
    2014
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
2010 Signal Transduction By Engineered Extracellular Matrices; Gordon Research Co
2010 工程细胞外基质的信号转导;
  • 批准号:
    7905520
    7905520
  • 财政年份:
    2010
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:

相似海外基金

Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
  • 批准号:
    10762144
    10762144
  • 财政年份:
    2023
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
  • 批准号:
    10659333
    10659333
  • 财政年份:
    2023
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Decoding cortical Notch signaling and morphogenic instruction at cell-cell interfaces
解码细胞-细胞界面的皮质Notch信号传导和形态发生指令
  • 批准号:
    10714471
    10714471
  • 财政年份:
    2023
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别:
Molecular basis of force-sensing by the keratin network
角蛋白网络力传感的分子基础
  • 批准号:
    10566716
    10566716
  • 财政年份:
    2023
  • 资助金额:
    $ 37.13万
    $ 37.13万
  • 项目类别: