A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
基本信息
- 批准号:9792278
- 负责人:
- 金额:$ 167.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAlgorithmsBasic ScienceBiomimeticsBypassCervical spinal cord injuryChicagoChronicCommon Data ElementDevelopmentDevicesElectric StimulationEmployment OpportunitiesEnsureEsthesiaEyeFeedbackFingersFreedomFrequenciesGoalsHandHand functionsHumanHybridsInstitutesIntuitionKineticsLearningLimb ProsthesisLimb structureLongevityManualsMethodsMindMotorMotor CortexMovementMuscleNeuronsOutputParticipantPatternPerformancePersonsPositioning AttributeProsthesisQuadriplegiaRoboticsSchemeSensorimotor functionsSensorySignal TransductionSomatosensory CortexSpinal cord injuryTactileTask PerformancesTestingTissuesTouch sensationUnited States National Institutes of HealthUniversitiesWorkWristarmarm functionarm movementbasebrain computer interfacecare costsclinical translationcostdesigndexterityexperiencegraspimprovedinjuredkinematicslimb movementmicrostimulationmicrosystemsmind controlneuronal patterningneuroprosthesisneurotechnologynovelprosthesis controlprosthetic handrelating to nervous systemrestorationrobot controlsensorsensory feedbacksomatosensoryspatiotemporalsuccesssynergism
项目摘要
PROJECT SUMMARY
Cervical spinal cord injury results in the loss of arm and hand function, which significantly limits independence
and results in costs over the person’s lifespan. A brain-computer interface (BCI) can be used to bypass the
injured tissue to enable control of a robotic arm and to provide somatosensory feedback. Two primary limitations
of current state-of-the-art BCIs for arm and hand control are: (1) the inability to control the forces exerted by the
prosthetic hand and (2) the lack of somatosensory feedback from the hand. In the proposed study, we seek to
considerably improve dexterous control of prosthetic limbs by implementing decoding strategies that enable the
user to not only control the movements of the arm and hand, but also the forces transmitted through the hand.
We anticipate that our biomimetic approach to decoding will yield intuitive, dexterous control of the prosthetic
hand. Tactile sensations will be conveyed to the user through intracortical microstimulation (ICMS) of
somatosensory cortex. The spatiotemporal patterns of stimulation will be based on our basic scientific
understanding of how tactile information is encoded in somatosensory cortex, which we expect will result in more
natural and intuitive sensations. In order to achieve our goal of developing a dexterous neuroprosthesis, we have
brought together a team with human BCI experience from the University of Pittsburgh along with the basic
science expertise at both Pitt and the University of Chicago. We will collaborate with experts in implantable
neurotechnology (Blackrock Microsystems) and robotics (The Biorobotics Institute) to ensure that the device
hardware allows us to take a biomimetic approach for control and feedback with an eye toward clinical translation.
A total of 4 participants will be tested in a multisite study to accomplish the following three specific aims. Aim 1:
Evoke natural and intuitive tactile sensations through ICMS of somatosensory cortex. We expect that biomimetic
ICMS will evoke sensations that more closely resemble everyday tactile sensations and intuitively convey
information about contacted objects than does standard fixed-frequency ICMS. Aim 2: Derive kinematic and
kinetic signals from motor cortex for hand control. We will assess the degree to which motor cortical neurons
encode forces exerted on objects. Based on these observations, we will develop hybrid decoders that enable
controlling both the movement and force using a synergy-based approach. Aim 3: Demonstrate improved arm
and hand function with a biomimetic sensorimotor BCI that combines the sensory feedback developed in Aim 1
with the hybrid decoding developed in Aim 2. A battery of functional assessments will be used including novel
metrics designed specifically for sensorimotor prosthetics along with well-established tests identified in the NIH
Common Data Elements. We anticipate that subjects will substantially improve their dexterity using a biomimetic
BCI as compared to non-biomimetic BCIs or BCIs without somatosensory feedback.
项目概要
颈脊髓损伤导致手臂和手功能丧失,严重限制独立性
并导致人的一生的成本,可以使用脑机接口(BCI)来绕过。
受伤的组织来控制机械臂并提供体感反馈有两个主要限制。
当前用于手臂和手控制的最先进的脑机接口有:(1)无法控制由手臂和手部施加的力
假肢手和(2)缺乏来自手的体感反馈在拟议的研究中,我们寻求
通过实施解码策略,显着提高假肢的灵巧控制
用户不仅可以控制手臂和手的运动,还可以控制通过手传递的力。
我们预计我们的仿生解码方法将产生对假肢的直观、灵巧的控制
触觉将通过皮质内微刺激(ICMS)传递给用户。
体感皮层的刺激时空模式将基于我们的基本科学。
了解触觉信息如何在体感皮层中编码,我们预计这将带来更多
为了实现开发灵巧的神经假体的目标,我们有自然和直观的感觉。
汇集了来自匹兹堡大学的具有人类 BCI 经验和基础知识的团队
我们将与皮特大学和芝加哥大学的科学专家合作。
神经技术(Blackrock Microsystems)和机器人技术(The Biorobotics Institute)确保该设备
硬件使我们能够采用仿生方法进行控制和反馈,着眼于临床转化。
共有 4 名参与者将在多地点研究中进行测试,以实现以下三个具体目标 1:
通过体感皮层的 ICMS 唤起自然直观的触觉,我们期待仿生。
ICMS 将唤起更接近日常触觉的感觉并直观地传达
目标 2:导出运动学和
来自运动皮层的运动信号用于手部控制我们将评估运动皮层神经元的程度。
基于这些观察,我们将开发混合解码器,以实现对施加在物体上的力的编码。
使用基于协同的方法控制运动和力量 目标 3:展示改进的手臂。
以及具有仿生感觉运动 BCI 的手部功能,该 BCI 结合了目标 1 中开发的感觉反馈
与目标 2 中开发的混合解码一起使用。将使用一系列功能评估,包括新颖的
专为感觉运动假肢设计的指标以及 NIH 确定的成熟测试
通用数据元素。我们预计受试者使用仿生技术将大大提高他们的灵活性。
BCI 与非仿生 BCI 或无体感反馈的 BCI 相比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL L. BONINGER其他文献
MICHAEL L. BONINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL L. BONINGER', 18)}}的其他基金
Rehabilitation Medicine Scientist Training Program
康复医学科学家培训计划
- 批准号:
9915954 - 财政年份:2019
- 资助金额:
$ 167.16万 - 项目类别:
Rehabilitation Medicine Scientist Training Program
康复医学科学家培训计划
- 批准号:
10611417 - 财政年份:2019
- 资助金额:
$ 167.16万 - 项目类别:
Rehabilitation Medicine Scientist Training Program
康复医学科学家培训计划
- 批准号:
10370389 - 财政年份:2019
- 资助金额:
$ 167.16万 - 项目类别:
A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
- 批准号:
10557094 - 财政年份:2018
- 资助金额:
$ 167.16万 - 项目类别:
A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
- 批准号:
10341043 - 财政年份:2018
- 资助金额:
$ 167.16万 - 项目类别:
A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
- 批准号:
10011944 - 财政年份:2018
- 资助金额:
$ 167.16万 - 项目类别:
Covert Sensorimotor Mapping for Guiding Brain-Computer Interfaces
用于指导脑机接口的隐蔽感觉运动映射
- 批准号:
8781356 - 财政年份:2015
- 资助金额:
$ 167.16万 - 项目类别:
Covert Sensorimotor Mapping for Guiding Brain-Computer Interfaces
用于指导脑机接口的隐蔽感觉运动映射
- 批准号:
9186960 - 财政年份:2015
- 资助金额:
$ 167.16万 - 项目类别:
Alliance for Regenerative Rehabilitation Research & Training (AR3T)
再生康复研究联盟
- 批准号:
9145751 - 财政年份:2015
- 资助金额:
$ 167.16万 - 项目类别:
Rehabilitation Medicine Scientist Training (RMST) Program
康复医学科学家培训(RMST)计划
- 批准号:
8431759 - 财政年份:2012
- 资助金额:
$ 167.16万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 167.16万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 167.16万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 167.16万 - 项目类别:
Improved Brain-Computer Interface Decoding for Activities of Daily Life
改进日常生活活动的脑机接口解码
- 批准号:
10744925 - 财政年份:2023
- 资助金额:
$ 167.16万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 167.16万 - 项目类别: