Improved Brain-Computer Interface Decoding for Activities of Daily Life
改进日常生活活动的脑机接口解码
基本信息
- 批准号:10744925
- 负责人:
- 金额:$ 69.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Action ResearchActivities of Daily LivingAddressAlgorithmsArtificial ArmBackBehaviorBehavioralBiomimeticsBrainClinical TrialsComplexDataDevelopmentDigit structureDistalEatingFeedbackFundingGenerationsGoalsHandHand functionsHomeHumanImpairmentImplantIndividualLearningLifeLimb structureLiquid substanceLocationMechanicsModelingMonkeysMotionMotorMotor CortexMotor outputMovementMulti-Institutional Clinical TrialNeurologicNeuronsOutputParalysedParticipantPatternPerformancePersonsPhysicsPopulationPositioning AttributeProceduresProsthesisRoboticsRoleShapesSignal TransductionSiteSomatosensory CortexSourceStructureTactileTestingTimeTrainingUpper ExtremityUser-Computer Interfacearmarm functionarm movementbrain computer interfacecookingdesignexperimental studyfallsflexibilitygraspimprovedinsightkinematicsmicrostimulationmotor controlneuralneuron componentnext generationnovelperformance testsprototypesensorvirtualvirtual realityvirtual reality environmentvirtual reality simulation
项目摘要
ABSTRACT
The development of brain-controlled prosthetic arms promises to provide independence to people with paralysis.
To date, however, Brain-Computer Interfaces (BCIs) have not conferred on users the ability to use the prosthesis
to carry out activities of daily living (ADLs) with adequate reliability and flexibility. This inability can be traced
back to at least three shortcomings. First, while we naturally closely coordinate arm and hand movements,
current BCI users reach and grasp sequentially, in large part due to the way BCI decoders are built. Second,
existing decoders use the component of the neuronal activity that has a direct and immediate relationship with
motor output to infer motor intent. While this approach has been successful even for control of an
anthropomorphic robotic arm and hand, it does not harness all the behaviorally relevant M1 activity. Indeed,
activity that has a direct and immediate relationship with behavior – the so-called output-potent activity –
constitutes only a small fraction of the total M1 activity. The remaining neuronal activity – so-called output-null
activity – plays a role in generating the output-potent activity but is overlooked by standard decoding approaches.
Third, while robotic hands have become increasingly sophisticated and anthropomorphic, no existing prototype
approaches the functionality of a human hand, either in terms of actuation or sensorization.
The goal of the proposed project is to address each of the aforementioned limitations by building more
biomimetic decoders – that allow for coordinated arm and hand movements and more effectively harness M1
activity – and by challenging them in a flexible and realistic virtual reality platform. First, we will build decoding
approaches that support coordinated movements of the arm and hand. To this end, we will train decoders while
subjects reach to and grasp objects that differ in shape, size, and orientation, forcing significant hand orienting
and pre-shaping during reaching. Second, we will further elaborate these decoders so that they leverage both
output-potent and output-null activity. To this end, we will leverage recent insights into M1 dynamics and their
relationship to behavior to build decoders that harness all the behaviorally relevant activity in M1. Finally, we will
test novel decoders in VR by having subjects perform standard tests of arm and hand function as well as tasks
that mimic complex activities of daily living and develop performance metrics for these VR scenarios. We are
well positioned to achieve these objectives as part of a multi-site clinical trial on BCI with 3 subjects implanted
across two locations, with existing funding for two more subjects.
抽象的
大脑控制假肢的开发有望为瘫痪患者提供独立性。
然而,迄今为止,脑机接口(BCI)尚未赋予用户使用假肢的能力
以足够的可靠性和灵活性进行日常生活活动(ADL) 这种能力是可以追踪的。
回到至少三个缺点,虽然我们自然地紧密协调手臂和手的动作,
目前的 BCI 用户是按顺序接触和掌握的,这在很大程度上是由于 BCI 解码器的构建方式所致。
现有的解码器使用与以下内容有直接和直接关系的神经活动组成部分:
虽然这种方法即使对于控制也很成功。
的确,
与行为有直接和直接关系的活动——所谓的产出有效活动——
仅占 M1 总活动的一小部分,即所谓的输出空。
活动——在产生有效输出活动中发挥作用,但被标准解码方法忽视。
第三,虽然机械手变得越来越复杂和拟人化,但还没有现有的原型
在驱动或传感方面接近人手的功能。
拟议项目的目标是通过构建更多的解决方案来解决提到的每个限制
仿生解码器 – 允许协调手臂和手的运动并更有效地利用 M1
活动 - 通过在灵活且逼真的虚拟现实平台中挑战它们,首先,我们将构建解码。
为此,我们将在训练解码器的同时支持手臂和手的协调运动。
受试者伸手抓住形状、大小和方向不同的物体,迫使手进行显着的定向
其次,我们将进一步详细说明这些解码器,以便它们充分利用两者。
为此,我们将利用对 M1 动态及其的最新见解。
与行为的关系来构建利用 M1 中所有行为相关活动的解码器。
通过让受试者执行手臂和手功能以及任务的标准测试来测试 VR 中的新型解码器
模拟日常生活中的复杂活动并为这些场景开发性能指标。
作为植入 3 名受试者的 BCI 多中心临床试验的一部分,我们有能力实现这些目标
跨越两个地点,现有资金用于另外两个科目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John E Downey其他文献
John E Downey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Autonomic Dysfunction in Patients with HFpEF
HFpEF 患者的自主神经功能障碍
- 批准号:
10587484 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Combination Gene Therapy for Treatment of Canine Mucopolysaccharidosis Type I
治疗犬 I 型粘多糖贮积症的组合基因疗法
- 批准号:
10582337 - 财政年份:2023
- 资助金额:
$ 69.04万 - 项目类别:
Evaluation of mechanistic role of artemin/GFRα3 signaling in osteoarthritis pain
artemin/GFRα3 信号在骨关节炎疼痛中的机制作用评估
- 批准号:
10444070 - 财政年份:2022
- 资助金额:
$ 69.04万 - 项目类别:
Data-driven Modeling and Ultrasound-based Control of Afferent Nerve Stimulation for Tremor Suppression
用于抑制震颤的传入神经刺激的数据驱动建模和基于超声的控制
- 批准号:
10453618 - 财政年份:2021
- 资助金额:
$ 69.04万 - 项目类别:
Data-driven Modeling and Ultrasound-based Control of Afferent Nerve Stimulation for Tremor Suppression
用于抑制震颤的传入神经刺激的数据驱动建模和基于超声的控制
- 批准号:
10288130 - 财政年份:2021
- 资助金额:
$ 69.04万 - 项目类别: