Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
基本信息
- 批准号:8326650
- 负责人:
- 金额:$ 31.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAchievementAddressAlgorithmsAreaBiologicalBiological ProcessBiomedical ResearchComputing MethodologiesControlled VocabularyDataDiseaseGene ProteinsGenesGoalsKnowledgeKnowledge DiscoveryKnowledge acquisitionLearningLiteratureMalignant NeoplasmsManualsMapsMethodologyMethodsMiningModelingNamesNatural Language ProcessingOntologyProceduresProcessProteinsPsyche structureResearchScienceSemanticsStructureSystemSystems BiologyTestingTextThe Cancer Genome AtlasTrainingTweensYeastsbiological systemsbiomedical informaticscancer celldata miningdesigninsightinterestknowledge of resultsnovelprotein functionprotein protein interactionresearch studytext searching
项目摘要
DESCRIPTION (provided by applicant):
A great challenge in the biomedical informatics domain is to develop computational methods that combine existing knowledge and experimental data to derive new knowledge regarding biological systems and disease mechanisms. Most knowledge regarding genes and proteins in biomedical literature is stored in the form of free text that is not suitable for computation, and the manual processes of encoding this body of knowledge into computable form cannot keep up with the rate of knowledge accumulation. The main thrust of the proposed research is to design novel statistical text-mining algorithms to acquire and represent knowledge regarding genes and proteins from free-text literature, and further to combine this acquired knowledge with experimental data to derive new knowledge. We will organize the proposed research to the following specific aims. Specific Aim 1. Develop ontology-guided semantic modeling algorithms for extracting biological concepts from free text, in which we will design hierarchical probabilistic topic models that are capable of representing biological concepts as a hierarchy and develop novel learning algorithms to infer biological concepts from free-text documents. Specific Aim 2. Integrate semantic modeling with BioNLP to extract textual evidence supporting protein-function annotations. We will develop information extraction algorithms that will combine the results of hierarchical semantic analysis and BioNLP to identify the text regions that will most likely provide evidence regarding the function of genes/proteins and map the extracted information to a controlled vocabulary. Specific Aim 3. Develop a framework to unify the procedures of knowledge reasoning and data mining for knowledge discovery. In this aim, we will reason using existing knowledge (represented in the form of an ontology) to reveal functional modules among the genes from the experimental data. We will then further develop algorithms that will reveal relationships between these gene modules by mining system-scaled experimental data. The overall framework will integrate functional reasoning and data mining in an iterative manner to refine the knowledge progressively and to derive rules such as: when genes involved in biological process X are perturbed, genes involved in biological process Y will respond. We will test the framework on the data from yeast-system biology studies and the Cancer Genome Atlas (TCGA) project to gain insights into the cellular systems and disease mechanisms of cancer cells.
描述(由申请人提供):
生物医学信息学领域的一个巨大挑战是开发结合现有知识和实验数据的计算方法,以获得有关生物系统和疾病机制的新知识。生物医学文献中有关基因和蛋白质的大多数知识都以不适合计算的自由文本形式存储,而将这些知识体系编码为可计算形式的手动过程无法跟上知识积累的速度。该研究的主要目的是设计新颖的统计文本挖掘算法,以从自由文本文献中获取和表示有关基因和蛋白质的知识,并进一步将所获取的知识与实验数据相结合以得出新知识。我们将组织拟议的研究以实现以下具体目标。具体目标 1. 开发本体引导的语义建模算法,用于从自由文本中提取生物概念,其中我们将设计能够将生物概念表示为层次结构的分层概率主题模型,并开发新颖的学习算法以从自由文本中推断生物概念。文本文档。具体目标 2. 将语义建模与 BioNLP 集成,以提取支持蛋白质功能注释的文本证据。我们将开发信息提取算法,将分层语义分析和 BioNLP 的结果结合起来,以识别最有可能提供有关基因/蛋白质功能的证据的文本区域,并将提取的信息映射到受控词汇表。具体目标 3. 开发一个框架来统一知识推理和数据挖掘的程序以发现知识。为此,我们将利用现有知识(以本体论的形式表示)进行推理,从实验数据中揭示基因之间的功能模块。然后,我们将进一步开发算法,通过挖掘系统规模的实验数据来揭示这些基因模块之间的关系。整体框架将以迭代的方式整合功能推理和数据挖掘,逐步完善知识并推导出规则,例如:当参与生物过程X的基因受到干扰时,参与生物过程Y的基因将做出反应。我们将利用酵母系统生物学研究和癌症基因组图谱(TCGA)项目的数据来测试该框架,以深入了解癌细胞的细胞系统和疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINGHUA LU其他文献
XINGHUA LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINGHUA LU', 18)}}的其他基金
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10579895 - 财政年份:2015
- 资助金额:
$ 31.72万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10371139 - 财政年份:2015
- 资助金额:
$ 31.72万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10171908 - 财政年份:2015
- 资助金额:
$ 31.72万 - 项目类别:
Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
- 批准号:
9042426 - 财政年份:2015
- 资助金额:
$ 31.72万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8202896 - 财政年份:2011
- 资助金额:
$ 31.72万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8714053 - 财政年份:2011
- 资助金额:
$ 31.72万 - 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
- 批准号:
7959967 - 财政年份:2009
- 资助金额:
$ 31.72万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
An Integrated Data Approach to Exploring Racial Differences in Reading Intervention Effectiveness
探索阅读干预效果中种族差异的综合数据方法
- 批准号:
10567796 - 财政年份:2023
- 资助金额:
$ 31.72万 - 项目类别:
Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
- 批准号:
10569397 - 财政年份:2023
- 资助金额:
$ 31.72万 - 项目类别:
Clinical and Molecular based prognostic factors for Venous Thromboembolism (VTE) in Children with Sickle Cell Disease
镰状细胞病儿童静脉血栓栓塞 (VTE) 的临床和分子预后因素
- 批准号:
10739524 - 财政年份:2023
- 资助金额:
$ 31.72万 - 项目类别: