Statistical methods for integromics discoveries

整合组学发现的统计方法

基本信息

  • 批准号:
    8131525
  • 负责人:
  • 金额:
    $ 32.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Contemporary systems biology is shifting the paradigm of biomedical research from minimalistic studies of individual genes/proteins to integration of information at systems level. Current high throughput biotechnologies enable collection of a large amount of biological information, and the different aspects of the cellular systems are reflected with heterogeneous data, e.g., genomics, epigenomics, transcriptomics and metabolomics. However, it remains a major challenge to systematically integrate this body of information and derive biological insights at a mechanistic level. The overarching goal of this project is to develop a computational system that enables integration of various high throughput "omics" data (an "integromics" approach) to gain insights into cellular systems, in particular the signal transduction systems. The activities of the project are organized into four specific aims, which progress from approaches for capturing general information among the multiple omics data to more specific and complex models designed to decipher specific cellular signaling systems. Firstly, we will develop a general framework, based on information theory and probabilistic models, to identify information modules that convey biological information between different "omics" data at large scale. Secondly, we develop methods to further investigate if the information from the multiple omics data reflects causal relationships. Thirdly, we will develop tools to recover missing information from the system to augment the high throughput technologies. Finally, we will develop a unified model to elucidate signal transduction pathways by integrating information form multiple omics data in manner that is both biologically sensible and mathematically rigorous. We expect that the methodologies developed in the project are widely applicable to study a variety of cellular signal transduction systems.
描述(由申请人提供): 当代系统生物学正在将生物医学研究的范式从单个基因/蛋白质的简约研究转变为系统水平的信息整合。当前的高通量生物技术能够收集大量生物信息,并且细胞系统的不同方面通过异构数据反映,例如基因组学、表观基因组学、转录组学和代谢组学。然而,系统地整合这些信息并在机械层面上获得生物学见解仍然是一个重大挑战。该项目的总体目标是开发一种计算系统,能够整合各种高通量“组学”数据(“整合组学”方法),以深入了解细胞系统,特别是信号转导系统。该项目的活动分为四个具体目标,从捕获多个组学数据中的一般信息的方法发展到旨在破译特定细胞信号系统的更具体和复杂的模型。首先,我们将开发一个基于信息论和概率模型的通用框架,以识别在大规模不同“组学”数据之间传递生物信息的信息模块。其次,我们开发了方法来进一步调查来自多个组学数据的信息是否反映了因果关系。第三,我们将开发工具来恢复系统中丢失的信息,以增强高吞吐量技术。最后,我们将开发一个统一的模型,通过以生物学上合理且数学上严格的方式整合来自多个组学数据的信息来阐明信号转导途径。我们期望该项目开发的方法能够广泛适用于研究各种细胞信号转导系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XINGHUA LU其他文献

XINGHUA LU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XINGHUA LU', 18)}}的其他基金

Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
  • 批准号:
    10579895
  • 财政年份:
    2015
  • 资助金额:
    $ 32.62万
  • 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
  • 批准号:
    10371139
  • 财政年份:
    2015
  • 资助金额:
    $ 32.62万
  • 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
  • 批准号:
    10171908
  • 财政年份:
    2015
  • 资助金额:
    $ 32.62万
  • 项目类别:
Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
  • 批准号:
    9042426
  • 财政年份:
    2015
  • 资助金额:
    $ 32.62万
  • 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
  • 批准号:
    8202896
  • 财政年份:
    2011
  • 资助金额:
    $ 32.62万
  • 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
  • 批准号:
    8714053
  • 财政年份:
    2011
  • 资助金额:
    $ 32.62万
  • 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
  • 批准号:
    8326650
  • 财政年份:
    2011
  • 资助金额:
    $ 32.62万
  • 项目类别:
Statistical methods for integromics discoveries
整合组学发现的统计方法
  • 批准号:
    8332877
  • 财政年份:
    2009
  • 资助金额:
    $ 32.62万
  • 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
  • 批准号:
    7959967
  • 财政年份:
    2009
  • 资助金额:
    $ 32.62万
  • 项目类别:
Statistical methods for integromics discoveries
整合组学发现的统计方法
  • 批准号:
    7740132
  • 财政年份:
    2009
  • 资助金额:
    $ 32.62万
  • 项目类别:

相似国自然基金

环境混合污染物的健康效应统计分析方法研究
  • 批准号:
    82373690
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
大数据背景下不完全数据的统计分析方法、理论和应用
  • 批准号:
    72331005
  • 批准年份:
    2023
  • 资助金额:
    165 万元
  • 项目类别:
    重点项目
复相干统计融合全局注意力模型的SAR微弱痕迹检测方法
  • 批准号:
    62301403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多重内源相关性校正的全转录组区域化关联分析联合模型构建及统计方法研究
  • 批准号:
    82373686
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于身份保持、统计挖掘与结构建模的鲁棒人脸复原方法研究
  • 批准号:
    62311530100
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 32.62万
  • 项目类别:
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.62万
  • 项目类别:
    Research Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 32.62万
  • 项目类别:
    Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 32.62万
  • 项目类别:
    Discovery Projects
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 32.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了