Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
基本信息
- 批准号:10579895
- 负责人:
- 金额:$ 31.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAntineoplastic AgentsBig DataBiologicalCancer PatientCancer cell lineCell modelCell physiologyCellsChemicalsDataDiseaseEventGene ExpressionGeneticGenetic TranscriptionGrainHumanImmune EvasionImmunotherapyIndividualInformation TheoryInterventionKnowledgeLearningLibrariesMalignant NeoplasmsMapsMessenger RNAMethodologyMicroRNAsMiningModelingMolecularMonitorNatureNetwork-basedOrganoidsOutcomePaperPathologicPathway interactionsPatientsPhenotypePhysiologicalPublishingResearchResearch PersonnelSideSignal PathwaySignal TransductionSignaling MoleculeStructureSystemSystems BiologyTechniquesTechnologyThe Cancer Genome AtlasTrainingTranslational ResearchUnited States National Institutes of HealthYeastsbiological systemscancer cellcancer therapycell behaviordata modelingdeep field surveydeep learningdeep learning algorithmdeep learning modeldesigndrug sensitivityexperiencegenome-wideinnovationinquiry-based learninginsightlearning algorithmlearning strategymachine learning algorithmmachine learning methodnovelpharmacologicpre-clinicalprecision medicineprecision oncologypredicting responsepreventresponsesingle-cell RNA sequencingsuccesstheoriestooltranscription factortranscriptometranscriptomicstranslational applicationstranslational impacttranslational medicinetransmission processtreatment responsetumortumor microenvironment
项目摘要
Understanding the state of cellular signaling systems provides insights to how cells behave under physiological
and pathological conditions. Cellular signaling systems are organized as hierarchy (cascade) and signals of a
molecular is often compositionally encoded to control cellular processes, such as gene expression. This
project aims to develop advanced deep learning models (DLMs) to simulate cellular signaling systems based
on gene expression data. In last 3 years, the project has made significant progresses, but the challenges
remain. Importantly, contemporary DLMs behave as “black boxes”, in that it is difficult to interpret how signals
are encoded and how to interpret which signal a hidden node represent in a DLM. This black-box nature
prevents researchers from gaining biological insights using DLMs, even though these models can be much
superior in modeling data than other types of models in many tasks, e.g., predicting drug sensitivity of cancer
cells. In this competitive renewal, we propose to develop novel DLMs and innovative inference algorithms to
train “interpretable” DLMs and apply them in translational research. The proposed research is innovative and
of high significance in several perspectives: 1) Our novel DLMs and algorithms take advantage of big data
resulting from systematic chemical/genetic perturbations of cellular signaling machinery, so that we can use
the perturbation condition as side information to reveal how signals are encoded in a DLM. 2) We integrate
principles of causal inference and information theory with deep learning method to make DLMs interpretable.
As results, that researchers can gain mechanistic insights from such models. 3) Innovative application of
interpretable DLMs will advance translational research. For example, we will train interpretable DLMs to model
cellular signaling at the level of single cells and use this information investigate inter-cellular interactions
among cells in tumor microenvironment to shed light on immune evasion mechanisms of cancers. We will also
use information derived from interpretable DLMs to predict cancer cell drug sensitivity. We anticipate that our
study will bring forth significant advances not only in deep learning methodology but also in precision medicine.
了解细胞信号系统的状态可以深入了解细胞在生理条件下的行为
细胞信号系统被组织为层次结构(级联)和信号。
分子通常通过成分编码来控制细胞过程,例如基因表达。
项目旨在开发先进的深度学习模型(DLM)来模拟基于细胞信号系统
在过去的3年里,该项目在基因表达数据方面取得了重大进展,但也面临着挑战。
重要的是,当代 DLM 的行为就像“黑匣子”,因为很难解释信号的方式。
被编码以及如何解释隐藏节点在 DLM 中代表哪个信号。
阻碍研究人员使用 DLM 获得生物学见解,尽管这些模型可能非常有用
在许多任务中,建模数据优于其他类型的模型,例如预测癌症的药物敏感性
在这次竞争性更新中,我们建议开发新颖的 DLM 和创新的推理算法来
训练“可解释的”DLM 并将其应用于转化研究。拟议的研究具有创新性和实用性。
从几个角度来看都具有重要意义:1)我们新颖的 DLM 和算法利用了大数据
由细胞信号机制的系统化学/遗传扰动产生,因此我们可以使用
扰动条件作为辅助信息来揭示信号在 DLM 中的编码方式 2) 我们进行积分。
因果推理和信息论原理以及深度学习方法使 DLM 可解释。
结果,研究人员可以从这些模型中获得机制见解3)创新应用。
可解释的 DLM 将推进转化研究,例如,我们将训练可解释的 DLM 来建模。
单细胞水平的细胞信号传导并使用此信息研究细胞间相互作用
我们还将研究肿瘤微环境中的细胞之间的关系,以揭示癌症的免疫逃避机制。
我们预计,使用来自可解释 DLM 的信息来预测癌细胞药物敏感性。
研究不仅将在深度学习方法方面而且在精准医学方面带来重大进步。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward multimodal signal detection of adverse drug reactions.
- DOI:10.1016/j.jbi.2017.10.013
- 发表时间:2017-12
- 期刊:
- 影响因子:4.5
- 作者:Harpaz R;DuMouchel W;Schuemie M;Bodenreider O;Friedman C;Horvitz E;Ripple A;Sorbello A;White RW;Winnenburg R;Shah NH
- 通讯作者:Shah NH
Inferring causal molecular networks: empirical assessment through a community-based effort.
- DOI:10.1038/nmeth.3773
- 发表时间:2016-04
- 期刊:
- 影响因子:48
- 作者:Hill SM;Heiser LM;Cokelaer T;Unger M;Nesser NK;Carlin DE;Zhang Y;Sokolov A;Paull EO;Wong CK;Graim K;Bivol A;Wang H;Zhu F;Afsari B;Danilova LV;Favorov AV;Lee WS;Taylor D;Hu CW;Long BL;Noren DP;Bisberg AJ;HPN-DREAM Consortium;Mills GB;Gray JW;Kellen M;Norman T;Friend S;Qutub AA;Fertig EJ;Guan Y;Song M;Stuart JM;Spellman PT;Koeppl H;Stolovitzky G;Saez-Rodriguez J;Mukherjee S
- 通讯作者:Mukherjee S
An exact algorithm for finding cancer driver somatic genome alterations: the weighted mutually exclusive maximum set cover problem.
- DOI:10.1186/s13015-016-0073-9
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Lu S;Mandava G;Yan G;Lu X
- 通讯作者:Lu X
A Novel Bayesian Framework Infers Driver Activation States and Reveals Pathway-Oriented Molecular Subtypes in Head and Neck Cancer.
- DOI:10.3390/cancers14194825
- 发表时间:2022-10-03
- 期刊:
- 影响因子:5.2
- 作者:Liu, Zhengping;Cai, Chunhui;Ma, Xiaojun;Liu, Jinling;Chen, Lujia;Lui, Vivian Wai Yan;Cooper, Gregory F.;Lu, Xinghua
- 通讯作者:Lu, Xinghua
A signal-based method for finding driver modules of breast cancer metastasis to the lung.
- DOI:10.1038/s41598-017-09951-2
- 发表时间:2017-08-30
- 期刊:
- 影响因子:4.6
- 作者:Yan G;Chen V;Lu X;Lu S
- 通讯作者:Lu S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINGHUA LU其他文献
XINGHUA LU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINGHUA LU', 18)}}的其他基金
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10371139 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Interpretable deep learning models for translational medicine
用于转化医学的可解释深度学习模型
- 批准号:
10171908 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Deciphering cellular signaling system by deep mining a comprehensive genomic compendium
通过深入挖掘全面的基因组纲要来破译细胞信号系统
- 批准号:
9042426 - 财政年份:2015
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8202896 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8714053 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
Ontology-Driven Methods for Knowledge Acquisition and Knowledge Discovery
本体驱动的知识获取和知识发现方法
- 批准号:
8326650 - 财政年份:2011
- 资助金额:
$ 31.37万 - 项目类别:
MODELING ROLES OF BIOACTIVE LIPIDS IN GENE EXPRESSION SYSTEMS
生物活性脂质在基因表达系统中的作用建模
- 批准号:
7959967 - 财政年份:2009
- 资助金额:
$ 31.37万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
- 批准号:
10604018 - 财政年份:2023
- 资助金额:
$ 31.37万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 31.37万 - 项目类别:
Center for comprehensive proteogenomic data analysis
综合蛋白质组数据分析中心
- 批准号:
10440579 - 财政年份:2022
- 资助金额:
$ 31.37万 - 项目类别:
Long non-coding RNA Heterogeneity in ER + Breast Cancer
ER 乳腺癌中的长非编码 RNA 异质性
- 批准号:
10459626 - 财政年份:2020
- 资助金额:
$ 31.37万 - 项目类别:
Long non-coding RNAs as novel therapeutic targets in gliomas treatment
长非编码RNA作为神经胶质瘤治疗的新靶点
- 批准号:
10064658 - 财政年份:2020
- 资助金额:
$ 31.37万 - 项目类别: