Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy

微惊厥,超慢

基本信息

  • 批准号:
    7653568
  • 负责人:
  • 金额:
    $ 31.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-15 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this proposal is to localize human epileptic networks by characterizing their electrophysiological activity over a wide range of spatiotemporal scales. Decades of clinical intracranial EEG (IEEG) using restricted spatial (centimeter scale) and temporal (~0.5-100 Hz) bandwidth, based more on tradition than modern neuroscience, have frustrated epileptologists looking for discrete, resectable "electrographic lesions" during evaluation for epilepsy surgery. Similarly, recent efforts to apply direct brain stimulation to abort seizures after they are sufficiently established to be detected on standard clinical macroelectrodes have, so far, met with only partial success. We hypothesize that enhancing the spatial and temporal resolution of clinical intracranial EEG can improve the efficacy of epilepsy surgery and responsive brain stimulation to control seizures. Human epileptic networks produce pathological activity that ranges from seizures and spikes, generated by cubic centimeters of brain tissue, to high frequency oscillations that occur on sub-millimeter dimensions. Recent evidence suggests that important components of these signals are found at frequencies not detected by standard clinical IEEG. Using simultaneous IEEG recordings from microwire arrays and clinical macroelectrodes, our group has begun to characterize two potential signatures of epileptogenic brain, high frequency oscillations and "micro-seizures," that are outside the resolution of conventional clinical IEEG. In this application, we propose analysis of continuous, high-resolution, wide- bandwidth IEEG recorded simultaneously from microwire arrays and clinical macroelectrodes in order to localize human epileptic networks. We will correlate our findings with surgical outcome, prospectively, in a cohort of patients undergoing evaluation for epilepsy surgery. This work builds upon our established effort in Translational Neuroengineering melding state of the art epilepsy care with cutting-edge research. PUBLIC HEALTH RELEVANCE The neuronal networks of human epileptic brain are multiscale; extending from cellular assemblies organized on the scale of cortical columns (~300 - 600 <m) to large-scale networks organized over lobar structures. These pathological networks generate oscillations over a wide range of frequency (0.01 - 1000 Hz) and spatial scales not probed by clinical EEG. Our laboratory and others have identified pathological network oscillations occurring outside the range of clinical IEEG that appear to be signatures of the epileptogenic zone.
描述(由申请人提供):该提案的目的是通过在各种时空尺度上表征其电生理活性来定位人类癫痫网络。使用限制的空间(厘米尺度)和时间(〜0.5-100 Hz)带宽的临床颅内脑电图(IEEG)数十年,基于传统而不是现代神经科学,在纤毛手术评估期间,寻求离散的,可切除的“电学性病变”的癫痫病学家都沮丧。同样,在到目前为止,最近在标准的临床宏观电极上检测到直接的脑刺激以将直接脑刺激应用于流产的癫痫发作,到目前为止仅取得了部分成功。我们假设增强临床颅内脑电图的空间和时间分辨率可以提高癫痫手术和脑刺激对控制癫痫发作的疗效。人类癫痫网络产生的病理活性,从癫痫发作和尖峰,由脑组织的立方厘米产生,到在亚毫米尺寸上发生的高频振荡。最近的证据表明,这些信号的重要组成部分是在标准临床IEEG未检测到的频率下发现的。我们的小组使用了Microwire阵列和临床宏观电极的同时录音,已经开始表征两个潜在的癫痫发作大脑,高频振荡和“微生物”的潜在特征,这些特征超出了常规临床IEEG的分辨率。在此应用中,我们提出了对连续的,高分辨率的宽带宽度IEEG的分析,同时从微线阵列和临床宏观电极进行了分析,以便本地化人类癫痫网络。我们将在接受癫痫手术评估的一系列患者中,将我们的发现与手术结局相关联。这项工作是基于我们在转化神经工程融合的最新癫痫护理和尖端研究的努力的基础上。公共卫生相关性人类癫痫大脑的神经元网络是多尺度的;从在皮质柱(〜300-600 <m)的尺度上组织的细胞组件延伸到通过小叶结构组织的大规模网络。这些病理网络会在频率(0.01-1000 Hz)和未通过临床脑电图探测的空间尺度上产生振荡。我们的实验室和其他实验室已经确定了在临床IEEG范围内发生的病理网络振荡,这些临床IEEG似乎是癫痫发作区的特征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory A Worrell其他文献

Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像

Gregory A Worrell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory A Worrell', 18)}}的其他基金

Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10518240
  • 财政年份:
    2022
  • 资助金额:
    $ 31.92万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10629373
  • 财政年份:
    2022
  • 资助金额:
    $ 31.92万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9445497
  • 财政年份:
    2015
  • 资助金额:
    $ 31.92万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9921573
  • 财政年份:
    2015
  • 资助金额:
    $ 31.92万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9238808
  • 财政年份:
    2015
  • 资助金额:
    $ 31.92万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9972970
  • 财政年份:
    2015
  • 资助金额:
    $ 31.92万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8448247
  • 财政年份:
    2009
  • 资助金额:
    $ 31.92万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8234974
  • 财政年份:
    2009
  • 资助金额:
    $ 31.92万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8053265
  • 财政年份:
    2009
  • 资助金额:
    $ 31.92万
  • 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
  • 批准号:
    6832791
  • 财政年份:
    2004
  • 资助金额:
    $ 31.92万
  • 项目类别:

相似国自然基金

青藏高原“中更新世”岩面艺术的热释光年代学研究
  • 批准号:
    42371161
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
科学与艺术的邂逅:艺术对科技创新的启示
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10 万元
  • 项目类别:
艺术品高光谱成像数字典藏与光谱颜色再现研究
  • 批准号:
    62275025
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于音色与颜色关联的艺术视听感知计算方法研究
  • 批准号:
    62276240
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
为无价之物定价:基于大数据方法的艺术品市场定价机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
  • 批准号:
    9337265
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
  • 批准号:
    9170127
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
  • 批准号:
    10004706
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:
A Bayesian Model for MRI-based Accelerated 4D Flow Imaging of Aortic Valve Stenosis
基于 MRI 的主动脉瓣狭窄加速 4D 血流成像的贝叶斯模型
  • 批准号:
    9112364
  • 财政年份:
    2016
  • 资助金额:
    $ 31.92万
  • 项目类别:
Phenomic and genomic study to subphenotype Hispanics with pulmonary hypertension
西班牙裔肺动脉高压亚表型的表型和基因组研究
  • 批准号:
    8795928
  • 财政年份:
    2014
  • 资助金额:
    $ 31.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了