Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
基本信息
- 批准号:9238808
- 负责人:
- 金额:$ 61.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAlgorithmsAnatomyAnimalsAntiepileptic AgentsAutomobile DrivingBehavioralBrainCanis familiarisCircadian RhythmsClassificationClinicalDataData AnalyticsDevice DesignsDoseDrowsinessDrug ExposureElectrocardiogramElectroencephalographyEmployee StrikesEnvironmentEpilepsyEventFocal SeizureGoalsGrantHeart RateHigh Frequency OscillationHippocampus (Brain)HumanIndividualInjuryInvestigationLeadLearningLifeMachine LearningMethodologyModelingNeocortexPartial EpilepsiesPathologicPatientsPatternPharmaceutical PreparationsPharmacologyPhysiologicalPopulationProbabilityPsychological ImpactScalp structureSeizuresSignal TransductionSleepStagingTechniquesThalamic structureTimeTrainingValidationclinically relevantempoweredheart rate variabilityimprovednovelpsychologicpublic health relevance
项目摘要
DESCRIPTION (provided by applicant): For most individuals living with epilepsy, seizures are relatively infrequent events occupying a small fraction of their life. Despite spending as little a 0.01% of their lives having seizures (typically only minutes per month), people with epilepsy take anti-epileptic drugs (AED) daily, suffer AED related side effects, and spend their lives dreading when the next seizure will strike. The apparent randomness of seizures is associated with significant psychological consequences. In addition, despite daily AED approximately 1/3 of patients continue to have seizures. We hypothesize that epilepsy can be more effectively treated, both the seizures and their psychological impact, by providing patients with real-time seizure forecasting. Periods of low seizure probability would not require AEDs, or at least lower doses of AEDs, thus reducing AED exposure and their side effects. Periods of high seizure probability may respond to acute AED and patients could alter their activities to avoid injury. Patients would be empowered to manage their medications and life activities using reliable seizure forecasts. In this grant we investigate the hypothesis that seizures are predictable events, and pursue accurate, clinically relevant seizure forecasting using recent advances in support vector machines (SVM), data-analytic models, and Universum-SVM applied to continuous intracranial EEG (iEEG) in focal canine epilepsy. This is an initial step in establishin a new treatment paradigm for focal epilepsy, whereby the probability of seizure occurrence is continuously tracked for patient warning and intelligent responsive therapies. Naturally occurring focal canine epilepsy is an excellent model for investigation of seizure forecasting because of the clinical and electrophsyiological similarity to focal human epilepsy. This study provides a unique opportunity to study seizure forecasting in naturally occurring canine epilepsy under uniform conditions (the same environment). Importantly, dogs are large enough to accommodate devices designed for human use. The hypotheses driving this proposal are that focal seizures are not random events and there are brain states associated with low or high probability of seizure occurrence, and that these states can be reliably classified using machine learning approaches (SVM & Universum-SVM) that combine features from iEEG, behavioral state tracking, and electrocardiogram (ECG) heart rate variability. The goal of this proposal is to
develop reliable seizure forecasting (when possible) and improved understanding (data characterization) when good forecasting is not possible.
描述(由适用提供):对于大多数患有癫痫病的人,癫痫发作的事件相对占据一生的一小部分。尽管他们的生命只有0.01%的癫痫发作(通常每月只有几分钟),但癫痫患者每天服用抗癫痫药(AED),遭受与AED相关的副作用,并在下一次癫痫发作时,他们的生命在起草。癫痫发作的外观随机性与重大的心理后果有关。此外,尽管每天的AED大约有1/3的患者继续癫痫发作。我们假设通过为患者提供实时癫痫发作预测,可以更有效地治疗癫痫病及其心理影响。低癫痫发作概率的周期不需要AED或至少较低剂量的AED,从而减少了AED暴露及其副作用。高癫痫发作概率的时期可能会对急性AED作出反应,并且患者可以改变其活动以避免受伤。患者将有权使用可靠的癫痫森林来管理其药物和生活活动。在这笔赠款中,我们调查了癫痫发作是可预测的事件,并且使用近期支持向量机器(SVM),数据分析模型和通用SVM的实用准确,临床相关的癫痫发作预测,并应用于焦点犬癫痫中连续的颅内EEG(IEEEG)。这是建立局灶性癫痫的新治疗范式的第一步,从而不断跟踪癫痫发作的可能性以进行患者警告和智能反应疗法。天然发生的局灶性犬癫痫是用于癫痫发作预测投资的绝佳模型,因为与局灶性人癫痫的临床和电论学相似。这项研究提供了一个独特的机会,可以在均匀条件下(相同的环境)在天然发生的犬癫痫中研究癫痫发作预测。重要的是,狗足够大,可以容纳设计用于人类使用的设备。推动该提案的假设是,局灶性癫痫发作不是随机事件,并且存在与癫痫发作的低概率相关的大脑状态,并且可以使用机器学习方法(SVM&Comeumum-SVM)可靠地对这些状态进行可靠分类,以结合IEEG,行为状态跟踪和电力标志(ECG)心脏速率的特征。该提议的目的是
在无法进行良好的预测时,开发可靠的癫痫发作预测(并在可能的情况下),并改善理解(数据表征)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory A Worrell其他文献
Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像
- DOI:
10.1101/2023.11.30.23299218 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rui Sun;Abbas Sohrabpour;Boney Joseph;Gregory A Worrell;Bin He - 通讯作者:
Bin He
Gregory A Worrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory A Worrell', 18)}}的其他基金
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10518240 - 财政年份:2022
- 资助金额:
$ 61.48万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10629373 - 财政年份:2022
- 资助金额:
$ 61.48万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9445497 - 财政年份:2015
- 资助金额:
$ 61.48万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9921573 - 财政年份:2015
- 资助金额:
$ 61.48万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9972970 - 财政年份:2015
- 资助金额:
$ 61.48万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8448247 - 财政年份:2009
- 资助金额:
$ 61.48万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
7653568 - 财政年份:2009
- 资助金额:
$ 61.48万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8234974 - 财政年份:2009
- 资助金额:
$ 61.48万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8053265 - 财政年份:2009
- 资助金额:
$ 61.48万 - 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
- 批准号:
6832791 - 财政年份:2004
- 资助金额:
$ 61.48万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 61.48万 - 项目类别:
PA TH2Caregiving: Data-Driven Digital Engagement to Assess and Address the Needs of Family Caregivers
PA TH2Caregiving:数据驱动的数字参与,评估和满足家庭护理人员的需求
- 批准号:
10598028 - 财政年份:2023
- 资助金额:
$ 61.48万 - 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
- 批准号:
10592000 - 财政年份:2023
- 资助金额:
$ 61.48万 - 项目类别:
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 61.48万 - 项目类别:
Modeling Multi-Source Data in Hodgkin Lymphoma
霍奇金淋巴瘤的多源数据建模
- 批准号:
10579326 - 财政年份:2022
- 资助金额:
$ 61.48万 - 项目类别: