Reliable Seizure Prediction Using Physiological Signals and Machine Learning

使用生理信号和机器学习进行可靠的癫痫发作预测

基本信息

  • 批准号:
    10629373
  • 负责人:
  • 金额:
    $ 58.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

For most individuals living with epilepsy, seizures are relatively infrequent events occupying a small fraction of their life. Despite spending as little as 0.01% of their lives having seizures (typically only minutes per month), people with epilepsy take anti-seizure drugs (ASD) daily, suffer ASD related side effects, and spend their lives dreading when the next seizure will strike. The apparent randomness of seizures is associated with significant psychological consequences. In addition, despite daily ASD, approximately 1/3 of patients continue to have seizures. We hypothesize that epilepsy can be more effectively treated, both the seizures and their psychological impact, by providing patients with real-time seizure forecasting. There is strong evidence that focal epilepsy is associated with a variable seizure risk that may enable adaptive therapy targeting periods of high seizure probability. Periods of low seizure probability could require lower ASD doses, reducing exposure and side effects. We propose that high seizure probability states will respond to adaptive electrical brain stimulation (aEBS). In addition, patients could alter their activities during periods of high seizure probability to reduce injury and manage their ASD and activities. The hypotheses driving this proposal are that 1.) seizures can be prevented (reduced incidence) by targeted EBS therapy during the pre-ictal state 2.) seizures are not random events, and that brain states associated with low and high seizure probability can be reliably classified using machine learning methods applied to physiologic signals and used to adaptively change EBS parameters. 3.) Furthermore, we propose forecasting can be improved using multi-modal features beyond passive iEEG recordings, including active brain probing with electrical stimulation (impedance & evoked potentials), core temperature, ECG and serum immunological markers. Goal: Develop reliable seizure forecasting (>90% sensitivity) with few false positives (<1% time in warning) and demonstrate modulation of seizure risk and reduction of focal seizures using aEBS.
对于大多数癫痫患者来说,癫痫发作是相对罕见的事件,只占一小部分。 他们的生活。尽管他们一生中癫痫发作的时间只有 0.01%(通常每月只有几分钟), 癫痫患者每天服用抗癫痫药物 (ASD),遭受 ASD 相关副作用,并度过一生 担心下一次癫痫发作的时间。癫痫发作的明显随机性与显着相关 心理后果。此外,尽管每天都有自闭症谱系障碍,但大约 1/3 的患者仍然患有自闭症谱系障碍 (ASD) 癫痫发作。我们假设癫痫可以得到更有效的治疗,包括癫痫发作及其发作 通过为患者提供实时癫痫发作预测来减轻心理影响。 有强有力的证据表明局灶性癫痫与可变的癫痫发作风险相关,这可能使适应性 针对癫痫发作高概率期的治疗。癫痫发作概率低的时期可能需要较低的 ASD 剂量,减少暴露和副作用。我们建议高癫痫发作概率国家将做出反应 适应性脑电刺激(aEBS)。此外,患者可以在治疗期间改变他们的活动。 高癫痫发作概率,可减少伤害并管理他们的 ASD 和活动。 推动该提议的假设是 1.) 可以通过有针对性的预防(减少发病率)癫痫发作 发作前状态期间的 EBS 治疗 2.) 癫痫发作不是随机事件,并且与以下因素相关的大脑状态 可以使用机器学习方法对低和高癫痫发作概率进行可靠分类 生理信号并用于自适应地改变 EBS 参数。 3.) 此外,我们建议预测 可以使用被动 iEEG 记录之外的多模式功能进行改进,包括主动脑探测 具有电刺激(阻抗和诱发电位)、核心温度、心电图和血清免疫学 标记。目标:开发可靠的癫痫发作预测(>90% 灵敏度),几乎没有误报(<1% 时间) 警告)并展示使用 aEBS 调节癫痫风险和减少局灶性癫痫发作。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal.
  • DOI:
    10.1109/tbme.2016.2586475
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiao HT;Cherkassky V;Lee J;Veber B;Patterson EE;Brinkmann BH;Worrell GA
  • 通讯作者:
    Worrell GA
Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry.
  • DOI:
    10.1038/s41597-021-01099-z
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Cimbalnik J;Dolezal J;Topçu Ç;Lech M;Marks VS;Joseph B;Dobias M;Van Gompel J;Worrell G;Kucewicz M
  • 通讯作者:
    Kucewicz M
Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast.
  • DOI:
    10.1111/epi.16785
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Payne DE;Dell KL;Karoly PJ;Kremen V;Gerla V;Kuhlmann L;Worrell GA;Cook MJ;Grayden DB;Freestone DR
  • 通讯作者:
    Freestone DR
Seizure Forecasting and the Preictal State in Canine Epilepsy.
  • DOI:
    10.1142/s0129065716500465
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Varatharajah Y;Iyer RK;Berry BM;Worrell GA;Brinkmann BH
  • 通讯作者:
    Brinkmann BH
Individualized Seizure Cluster Prediction Using Machine Learning and Chronic Ambulatory Intracranial EEG.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory A Worrell其他文献

Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像

Gregory A Worrell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory A Worrell', 18)}}的其他基金

Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10518240
  • 财政年份:
    2022
  • 资助金额:
    $ 58.68万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9445497
  • 财政年份:
    2015
  • 资助金额:
    $ 58.68万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9921573
  • 财政年份:
    2015
  • 资助金额:
    $ 58.68万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9238808
  • 财政年份:
    2015
  • 资助金额:
    $ 58.68万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9972970
  • 财政年份:
    2015
  • 资助金额:
    $ 58.68万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8448247
  • 财政年份:
    2009
  • 资助金额:
    $ 58.68万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    7653568
  • 财政年份:
    2009
  • 资助金额:
    $ 58.68万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8234974
  • 财政年份:
    2009
  • 资助金额:
    $ 58.68万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8053265
  • 财政年份:
    2009
  • 资助金额:
    $ 58.68万
  • 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
  • 批准号:
    6832791
  • 财政年份:
    2004
  • 资助金额:
    $ 58.68万
  • 项目类别:

相似国自然基金

基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
  • 批准号:
    52302494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
  • 批准号:
    71901134
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
  • 批准号:
    71871028
  • 批准年份:
    2018
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
  • 批准号:
    31771225
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Intermittent Hypoxia Initiated Motor Plasticity in Individuals with Multiple Sclerosis
间歇性缺氧引发多发性硬化症患者的运动可塑性
  • 批准号:
    10593412
  • 财政年份:
    2023
  • 资助金额:
    $ 58.68万
  • 项目类别:
Predictive Functions and Neural Mechanisms of Spontaneous Cortical Activity
自发皮质活动的预测功能和神经机制
  • 批准号:
    10572486
  • 财政年份:
    2023
  • 资助金额:
    $ 58.68万
  • 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
  • 批准号:
    10677394
  • 财政年份:
    2023
  • 资助金额:
    $ 58.68万
  • 项目类别:
Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
  • 批准号:
    10806492
  • 财政年份:
    2023
  • 资助金额:
    $ 58.68万
  • 项目类别:
Retinal Ischemia Treatment by Oxygen Nanobubbles
氧纳米气泡治疗视网膜缺血
  • 批准号:
    10723843
  • 财政年份:
    2023
  • 资助金额:
    $ 58.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了