Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
基本信息
- 批准号:10004706
- 负责人:
- 金额:$ 77.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmic SoftwareAlgorithmsApneaArtsBig DataBiological MarkersBradycardiaBreathingBronchopulmonary DysplasiaBudgetsCharacteristicsChronicChronic lung diseaseClinicalClinical ResearchClinical TrialsComputer ModelsComputersComputing MethodologiesDNADataData CollectionData Coordinating CenterData SecurityData SetDetectionEarly DiagnosisEventFundingFutureGoalsHealthHeart RateHigh Performance ComputingHome environmentIndividualInfantInvestigationLaboratoriesLeadershipLettersLung diseasesMaintenanceMedicalMissionModelingMonitorMorbidity - disease rateMulticenter StudiesNecrotizing EnterocolitisNeonatal Intensive Care UnitsOutcomeOutcome MeasurePathogenesisPatternPerformancePhenotypePhysiologicalPremature InfantPreventionPreventive measurePreventive treatmentProtocols documentationPublic HealthRecordsReportingResearchResourcesRespirationSecureSepsisSiteStatistical Data InterpretationStatistical ModelsStructureTechniquesTestingTimeTissuesU-Series Cooperative AgreementsUnited StatesUnited States National Institutes of HealthUniversitiesVirginiaWorkbiobankclinical databaseclinically significantcluster computingcohortcomputerized toolscostdata exchangedata managementdata privacydata resourceexperienceimprovedimproved outcomeinnovationmathematical modelnovelpredictive modelingprematurepreventprogramsprospectiveresearch facilityrespiratoryrespiratory morbidityresponsesignal processingtool
项目摘要
Project summary/abstract
Fundamental gaps in prevention of chronic lung disease in premature infants include the lack of
understanding of mechanisms by which maturation of ventilatory control allows maintenance of
adequate oxygenation, and how immature breathing phenotypes contribute to outcomes. Achieving
the long-term goal of trials of effective preventive measures and treatments includes detection and
analysis of immature breathing patterns in a large database of clinical information and
cardiorespiratory monitoring data from multiple Neonatal ICUs, including vital signs and waveforms.
The objectives of this proposal are (1) automated, validated detection of immature breathing patterns
by teams of clinicians and mathematicians, and (2) a Leadership and Data Coordination Center
(LDCC) for this NIH cooperative agreement to study a prospective observational cohort. The central
hypothesis is that quantification of immature breathing will identify physiological biomarkers that can
serve as targets for prevention and treatment that improve outcomes. A proposed multicenter protocol
has Aims 1 and 2 to develop predictive models for immature breathing, and to relate them to clinically
significant respiratory outcomes. The proposed LDCC builds on the experience of this university in
successful completion of the heart rate characteristics monitoring trial, the largest RCT in premature
infants, NIH-funded and completed on time and on budget. The computing requirements will be met by
a new University of Virginia Center and in concert with our partners Lawrence Livermore National
Laboratory and Intel Corporation. We will isolate and store DNA in our Biorepository and Tissue
Research Facility, and manage sites with our Clinical Trials Office. Large-scale computing clusters
dedicated for this work are in daily use. The contributions are expected to be (1) computational tools
for prediction of respiratory outcomes, and (2) effective LDCC performance in data management,
computational modeling, biorepository, and clinical studies management. The proposed research will
be significant because it is the first step in programs for better therapies and preventive measures for
chronic lung disease in premature infants. The proposed advanced analysis of monitoring data is
innovative because of the cutting edge solutions to advanced computing and data security that may
also inform other NIH multicenter studies of Big Data.
项目概要/摘要
预防早产儿慢性肺病的根本差距包括缺乏
了解成熟的通气控制机制可以维持
充足的氧合,以及不成熟的呼吸表型如何影响结果。实现
试验有效预防措施和治疗的长期目标包括检测和治疗
对大型临床信息数据库中不成熟的呼吸模式进行分析
来自多个新生儿 ICU 的心肺监测数据,包括生命体征和波形。
该提案的目标是 (1) 对不成熟的呼吸模式进行自动化、经过验证的检测
由临床医生和数学家团队组成,以及 (2) 领导力和数据协调中心
(LDCC)感谢 NIH 的这项合作协议来研究前瞻性观察队列。中央
假设是,对不成熟呼吸的量化将识别可以识别的生理生物标志物
作为改善结果的预防和治疗目标。拟议的多中心协议
目标 1 和 2 开发不成熟呼吸的预测模型,并将其与临床联系起来
显着的呼吸结果。拟议的 LDCC 建立在该大学在
成功完成早产儿最大的心率特征监测试验
婴儿,由 NIH 资助并按时按预算完成。计算要求将满足
与我们的合作伙伴劳伦斯利弗莫尔国家大学合作建立新的弗吉尼亚大学中心
实验室和英特尔公司。我们将在我们的生物样本库和组织中分离并储存 DNA
研究设施,并通过我们的临床试验办公室管理站点。大规模计算集群
专门用于这项工作的都是日常使用的。预计贡献为(1)计算工具
用于预测呼吸结果,以及 (2) LDCC 在数据管理方面的有效表现,
计算模型、生物样本库和临床研究管理。拟议的研究将
意义重大,因为这是更好的治疗和预防措施计划的第一步
早产儿慢性肺部疾病。建议对监测数据进行高级分析
创新是因为先进计算和数据安全的尖端解决方案可能
还为其他 NIH 多中心大数据研究提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS E LAKE其他文献
DOUGLAS E LAKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS E LAKE', 18)}}的其他基金
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9337265 - 财政年份:2016
- 资助金额:
$ 77.89万 - 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9170127 - 财政年份:2016
- 资助金额:
$ 77.89万 - 项目类别:
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于E级超算的裂隙岩体三维数值流形法高性能算法研究及软件开发
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Eliminating Interference from Autofluorescence in Flow Cytometry
消除流式细胞术中自发荧光的干扰
- 批准号:
10484468 - 财政年份:2022
- 资助金额:
$ 77.89万 - 项目类别:
Eliminating Interference from Autofluorescence in Flow Cytometry
消除流式细胞术中自发荧光的干扰
- 批准号:
10593113 - 财政年份:2022
- 资助金额:
$ 77.89万 - 项目类别:
Multivariable Artificial Pancreas System to Detect and Mitigate the Effects of Unannounced Physical Activities and Acute Psychological Stress
多变量人工胰腺系统可检测和减轻未经通知的体力活动和急性心理压力的影响
- 批准号:
10488195 - 财政年份:2021
- 资助金额:
$ 77.89万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10323090 - 财政年份:2021
- 资助金额:
$ 77.89万 - 项目类别:
Remote Patient Monitoring of Family Caregivers of Patients with Alzheimer's Disease
阿尔茨海默病患者家庭护理人员的远程患者监控
- 批准号:
10253642 - 财政年份:2021
- 资助金额:
$ 77.89万 - 项目类别: