Remote Patient Monitoring of Family Caregivers of Patients with Alzheimer's Disease

阿尔茨海默病患者家庭护理人员的远程患者监控

基本信息

  • 批准号:
    10253642
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Patients with Alzheimer’s disease & related dementia (ADRD) experience 400,000 avoidable hospitalizations annually, amounting to $5.4 billion in preventable healthcare costs. In addition to financial costs, avoidable hospitalizations increase risks for adverse outcomes, such as secondary infections, deliriums, or acute distress. To prevent hospitalizations, clinicians rely on caregivers of patients with ADRD to report any physical, behavioral, and emotional changes that caregivers observe. If communicated in a timely manner, many such changes can be addressed without hospitalization, but through pharmacological interventions, home visits, or clinic visits. Currently, communication between clinicians and family caregivers depends on the caregiver knowing when to call, and clinicians sorting through messages of various importance to find and address worrisome changes associated with an impending hospitalization. This strategy is insufficient, as it delays communication of potentially significant changes in patients with ADRD to the clinician. It also relies on caregivers’ ability to distinguish innocuous changes from those that can lead to hospitalizations. To minimize occurrence of avoidable hospitalizations in patients with ADRD, we will develop and test the first remote patient-monitoring platform, Digital Outpost, based on caregiver-reported information. The platform will contain two parts: the native Caregiver App and web-based Clinician Action Dashboard. Guided by user-centered design principles and rapid qualitative research methods, we will query 12 caregivers of patients with ADRD regarding content, look, feel, and experience of the Caregiver App. Using input of 20 clinicians through Delphi and discrete choice methodology, we will define the daily clinical surveys through which caregivers will report physical, behavioral, and emotional changes in patients with ADRD. We will also define the algorithms for analyzing and displaying caregiver-reported data in the Clinician Action Dashboard. Then, we will develop the supporting platform prototype using Agile/Kanban-based Software Development methodology and conduct a 14-day pilot study of Digital Outpost with ten primary caregivers of patients with moderate ADRD. Primary outcome of the pilot will be usability, measured by the System Usability Scale, with a follow-up assessment through rapid qualitative methods. Secondary outcome will be feasibility, measured through platform usage statistics. Upon completion, we will be poised to update the platform to include integration of other smartphone data (e.g. walking steps), use a machine-learning based predictive algorithm for hospitalization, and test efficacy of Digital Outpost in reducing all-cause hospitalization through multi-site trial in a Phase II STTR application.
项目概要 阿尔茨海默氏病及相关痴呆症 (ADRD) 患者有 400,000 次本可避免的住院治疗 每年,除了可避免的财务成本外,可预防的医疗费用高达 54 亿美元。 住院治疗会增加不良后果的风险,例如继发感染、谵妄或急性应激。 为了防止住院,请依赖 ADRD 患者的护理人员报告任何身体、行为、 如果及时沟通,许多此类变化都可以发生。 无需住院即可解决,而是通过药物干预、家访或诊所就诊。 目前,教区居民和家庭照顾者之间的沟通取决于照顾者知道何时 呼叫,并对各种重要的消息进行排序,以查找和解决令人担忧的变化 这种策略是不够的,因为它延迟了沟通。 ADRD 患者对临床医生而言可能发生的重大变化还取决于护理人员的能力。 区分无害的变化和可能导致住院的变化,以尽量减少可避免的情况的发生。 ADRD 患者住院,我们将开发和测试第一个远程患者监测平台, 数字前哨站,基于护理人员报告的信息 该平台将包含两部分:本地。 护理人员应用程序和基于网络的临床医生操作仪表板以用户为中心的设计原则和快速指导。 定性研究方法,我们将询问 ADRD 患者的 12 名护理人员的内容、外观、感觉、 以及通过 Delphi 和离散选择输入 20 个护理者应用程序的经验。 方法,我们将定义每日临床调查,护理人员将通过这些调查报告身体、行为、 我们还将定义分析和显示 ADRD 患者的情绪变化。 然后,我们将开发支持平台。 使用基于敏捷/看板的软件开发方法进行原型设计,并进行为期 14 天的试点研究 数字前哨站由 10 名中度 ADRD 患者的主要护理人员组成,该试点的主要结果将是。 可用性,通过系统可用性量表进行衡量,并通过快速定性进行后续评估 次要结果将是通过平台使用统计数据衡量的可行性。 我们将准备更新该平台,以包含其他智能手机数据的集成(例如步行步骤),使用 基于机器学习的住院预测算法,并测试 Digital Outpost 在减少住院方面的功效 通过 II 期 STTR 应用中的多中心试验进行全因住院治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Nicolla其他文献

Jonathan Nicolla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational Methods for Analyzing lmmunoglobulin Allelic Diversity in B cells
分析 B 细胞中免疫球蛋白等位基因多样性的计算方法
  • 批准号:
    10751541
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
Understanding spinal neuropeptide signaling in itch
了解瘙痒中的脊髓神经肽信号传导
  • 批准号:
    10426855
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
Understanding spinal neuropeptide signaling in itch
了解瘙痒中的脊髓神经肽信号传导
  • 批准号:
    10619024
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
Spatial Resynchronization Therapy for AFib
AFib 空间再同步治疗
  • 批准号:
    10546248
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了