Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
基本信息
- 批准号:9337265
- 负责人:
- 金额:$ 77.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmic SoftwareAlgorithmsApneaArtsBig DataBiological MarkersBradycardiaBreathingBronchopulmonary DysplasiaBudgetsCharacteristicsChronicChronic lung diseaseClinicalClinical ResearchClinical TrialsComputer SimulationComputersComputing MethodologiesDNADataData CollectionData Coordinating CenterData SecurityData SetDatabasesDetectionEarly DiagnosisEventFundingFutureGoalsHealthHeart RateHigh Performance ComputingHome environmentIndividualInfantInvestigationLaboratoriesLeadershipLettersLung diseasesMaintenanceMedicalMissionModelingMonitorMorbidity - disease rateMulticenter StudiesNecrotizing EnterocolitisNeonatal Intensive Care UnitsOutcomeOutcome MeasurePathogenesisPatternPerformancePhenotypePhysiologicalPremature InfantPreventionPreventive measurePreventive treatmentPrivacyProtocols documentationPublic HealthRecordsReportingResearchResourcesRespirationSecureSepsisSiteStatistical Data InterpretationStatistical ModelsStructureTechniquesTestingTimeTissuesU-Series Cooperative AgreementsUnited StatesUnited States National Institutes of HealthUniversitiesVirginiaWorkbiobankclinically significantcluster computingcohortcomputerized toolscostdata managementdata resourceexperienceimprovedimproved outcomeinnovationmathematical modelnovelpredictive modelingprematurepreventprogramsprospectiveresearch facilityrespiratoryresponsesignal processingtool
项目摘要
Project summary/abstract
Fundamental gaps in prevention of chronic lung disease in premature infants include the lack of
understanding of mechanisms by which maturation of ventilatory control allows maintenance of
adequate oxygenation, and how immature breathing phenotypes contribute to outcomes. Achieving
the long-term goal of trials of effective preventive measures and treatments includes detection and
analysis of immature breathing patterns in a large database of clinical information and
cardiorespiratory monitoring data from multiple Neonatal ICUs, including vital signs and waveforms.
The objectives of this proposal are (1) automated, validated detection of immature breathing patterns
by teams of clinicians and mathematicians, and (2) a Leadership and Data Coordination Center
(LDCC) for this NIH cooperative agreement to study a prospective observational cohort. The central
hypothesis is that quantification of immature breathing will identify physiological biomarkers that can
serve as targets for prevention and treatment that improve outcomes. A proposed multicenter protocol
has Aims 1 and 2 to develop predictive models for immature breathing, and to relate them to clinically
significant respiratory outcomes. The proposed LDCC builds on the experience of this university in
successful completion of the heart rate characteristics monitoring trial, the largest RCT in premature
infants, NIH-funded and completed on time and on budget. The computing requirements will be met by
a new University of Virginia Center and in concert with our partners Lawrence Livermore National
Laboratory and Intel Corporation. We will isolate and store DNA in our Biorepository and Tissue
Research Facility, and manage sites with our Clinical Trials Office. Large-scale computing clusters
dedicated for this work are in daily use. The contributions are expected to be (1) computational tools
for prediction of respiratory outcomes, and (2) effective LDCC performance in data management,
computational modeling, biorepository, and clinical studies management. The proposed research will
be significant because it is the first step in programs for better therapies and preventive measures for
chronic lung disease in premature infants. The proposed advanced analysis of monitoring data is
innovative because of the cutting edge solutions to advanced computing and data security that may
also inform other NIH multicenter studies of Big Data.
项目摘要/摘要
预防早产儿的慢性肺病的基本差距包括缺乏
了解通气控制成熟的机制可以维护的机制
充足的氧合以及未成熟的呼吸表型如何导致结果。实现
有效预防措施和治疗试验的长期目标包括检测和
在大型临床信息数据库中分析未成熟的呼吸模式和
来自多个新生儿ICU的心肺监测数据,包括生命体征和波形。
该提案的目标是(1)自动化的,经过验证的未成熟呼吸模式的检测
由临床医生和数学家团队以及(2)领导和数据协调中心
(LDCC)关于NIH合作协议,以研究前瞻性观察队列。中央
假设是,未成熟呼吸的量化将确定可以
作为预防和治疗的靶标,可以改善预后。提出的多中心协议
目标是1和2,以开发未成熟呼吸的预测模型,并将其与临床联系起来
明显的呼吸结果。拟议的LDCC建立在这所大学的经验基础上
成功完成心率特征监测试验,这是最大的RCT
NIH资助的婴儿按时并按预算完成。计算要求将通过
弗吉尼亚大学的新大学中心,并与我们的合作伙伴劳伦斯·利弗莫尔国家
实验室和英特尔公司。我们将隔离并存储DNA在我们的生物座和组织中
研究设施,并通过我们的临床试验办公室管理站点。大规模计算集群
专门用于这项工作的日常使用。预计该贡献将为(1)计算工具
为了预测呼吸结局,以及(2)数据管理中有效的LDCC性能,
计算建模,生物验证和临床研究管理。拟议的研究将
要重要,因为这是更好疗法和预防措施的计划的第一步
早产婴儿的慢性肺病。提议的监视数据的高级分析是
创新性是因为具有先进计算和数据安全性的最先进解决方案
还告知其他NIH大数据多中心研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS E LAKE其他文献
DOUGLAS E LAKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS E LAKE', 18)}}的其他基金
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9170127 - 财政年份:2016
- 资助金额:
$ 77.95万 - 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
10004706 - 财政年份:2016
- 资助金额:
$ 77.95万 - 项目类别:
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深度学习中的流形优化问题:算法设计与求解软件包的开发
- 批准号:12301408
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Eliminating Interference from Autofluorescence in Flow Cytometry
消除流式细胞术中自发荧光的干扰
- 批准号:
10484468 - 财政年份:2022
- 资助金额:
$ 77.95万 - 项目类别:
Eliminating Interference from Autofluorescence in Flow Cytometry
消除流式细胞术中自发荧光的干扰
- 批准号:
10593113 - 财政年份:2022
- 资助金额:
$ 77.95万 - 项目类别:
Multivariable Artificial Pancreas System to Detect and Mitigate the Effects of Unannounced Physical Activities and Acute Psychological Stress
多变量人工胰腺系统可检测和减轻未经通知的体力活动和急性心理压力的影响
- 批准号:
10488195 - 财政年份:2021
- 资助金额:
$ 77.95万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10323090 - 财政年份:2021
- 资助金额:
$ 77.95万 - 项目类别:
Remote Patient Monitoring of Family Caregivers of Patients with Alzheimer's Disease
阿尔茨海默病患者家庭护理人员的远程患者监控
- 批准号:
10253642 - 财政年份:2021
- 资助金额:
$ 77.95万 - 项目类别: