Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
基本信息
- 批准号:7656493
- 负责人:
- 金额:$ 45.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiologicalBiological MarkersBiologyBlood specimenBody mass indexBreastBreast Cancer PreventionBreast Cancer Risk FactorChronic DiseaseComplementComplexCoronary ArteriosclerosisDataDietDiseaseEnvironmental Risk FactorEtiologyGenesGeneticGenetic MarkersGenetic VariationGenome ScanGenotypeHealthHeritabilityHeritable Quantitative TraitHormonesInheritedInterventionLeadLifeLipidsMalignant neoplasm of prostateMammographic DensityMammographyMeasuresNurses&apos Health StudyOutcomeParticipantPathway interactionsPhenotypePopulationPositioning AttributePostmenopausePredispositionPreventionRiskRisk FactorsStagingSurrogate MarkersVariantWomanbreast densitycancer geneticscancer genomecancer riskcarcinogenesiscase controlcohortcostdensitygene environment interactiongene interactiongenetic variantgenome wide association studylifestyle factorsmalignant breast neoplasmnon-geneticnovelpublic health relevancereproductivetrait
项目摘要
DESCRIPTION (provided by applicant): Mammographic density is one of the strongest risk factors for breast cancer. Women with the highest mammographic density are at a four- to six-fold greater risk of breast cancer than women with the lowest density. Recently for other chronic diseases (e.g., coronary artery disease), we have seen proof-of-principle that utilizing a reliably measured, heritable quantitative trait (e.g., circulating lipids) that is a strong risk factor for the outcome can identify novel loci for the disease that were not identified through genome-wide association studies (GWASs) of the outcome. Thus, studies of heritable phenotypes can uncover biological pathways that will lead to a better understanding of basic mechanisms of disease and may identify targets for intervention. In a similar paradigm, mammographic density is a highly heritable, reliably measured, quantitative trait and a well-established strong predictor of breast cancer independent of known breast cancer risk factors. Identifying genes associated with mammographic density will identify mechanisms related to not only breast density, but has immense potential to detect genes involved with breast cancer. We propose to conduct a multi-stage GWAS of mammographic density among postmenopausal women (Aim 1). As part of the Cancer Genetic Markers of Susceptibility (CGEMS) project, postmenopausal breast cancer cases and controls in the Nurses' Health Study (NHS) have whole genome scans completed. We estimate that we will have mammographic density data on 1,800 of these women. Our initial analysis will examine the association between 2.5 million SNPs (includes 550,000 genotyped and the remainder imputed) and mammographic density among women included in the CGEMS project (Stage 1). To minimize false positive and negative associations, we will pursue the highest-ranking 7,600 SNPs from Stage 1 in an additional 1,200 postmenopausal women from the NHS (Stage 2). The 1,536 most promising SNPs will be genotyped in 3,000 postmenopausal participants in the Mayo Mammography Health Study (MMHS) (Stage 3).Validated SNPs that emerge from the multi-stage study will be evaluated for biologically plausible gene-environment interactions (Aim 2). The NHS and MMHS are both well established cohorts of demographically similar populations with blood samples, mammographic density data and extensive exposure information on breast cancer risk factors. We will also evaluate if validated SNPs from Aim 1 are associated with breast cancer risk in the NHS and in the Breast and Prostate Cancer Cohort Consortium (with over 6,000 breast cancer cases and controls). The results of the proposed study will complement those from breast cancer GWASs by increasing our understanding of breast biology and etiology of breast cancer. This is a unique, cost-efficient, and timely proposal to identify novel genetic pathways underlying breast density and breast cancer. Identification of genes associated with mammographic density will allow for study of their function as it relates to density and breast cancer and opens up the possibility for novel targets of breast cancer prevention and treatment. PUBLIC HEALTH RELEVANCE: Elucidating the genetic components of complex diseases with multifactorial causes such as breast cancer can be enhanced through concentration on heritable risk factors for the disease. Mammographic density is a highly heritable, reliably measured, quantitative trait and a well- established strong predictor of breast cancer independent of known breast cancer risk factors. This multi-stage genome-wide association study of mammographic density will not only identify novel loci associated with breast density, but will complement the studies of breast cancer by increasing our understanding of breast biology and etiology of breast cancer.
描述(由申请人提供):乳腺X线摄影密度是乳腺癌最强的危险因素之一。乳房X线学密度最高的女性比密度最低的女性患乳腺癌的风险高四至六倍。最近,对于其他慢性疾病(例如冠状动脉疾病),我们看到了利用可靠测量的,可遗传的定量性状(例如,循环脂质)的原则证明,这是结果的强大风险因素,可以通过基因组研究(GWASS)(GWASS)(GWASS)的疾病来鉴定出新的基因座的疾病。因此,对可遗传表型的研究可以揭示生物学途径,从而可以更好地理解疾病的基本机制,并可能确定干预措施的目标。在类似的范式中,乳腺X线摄影密度是一种高度可靠的,可靠的测量,定量性状,并且是乳腺癌的良好强大预测指标,独立于已知的乳腺癌危险因素。鉴定与乳房X线照相密度相关的基因将不仅鉴定与乳房密度相关的机制,而且具有检测与乳腺癌有关的基因的巨大潜力。我们建议在绝经后妇女中进行乳房X线摄影密度的多阶段GWA(AIM 1)。作为易感性(CGEM)项目的癌症遗传标记的一部分,护士健康研究(NHS)中绝经后乳腺癌病例和对照组完成了整个基因组扫描。我们估计我们将拥有1,800名这些女性的乳房X线照相密度数据。我们的初步分析将研究250万SNP(包括550,000个基因分型和剩余的估算)和CGEM项目中包括的女性(第1阶段)之间的关联。为了最大程度地减少假积极和负面的关联,我们将在1,200名NHS(第2阶段)的1,200名绝经后妇女中追求最高的7,600个SNP。 1,536个最有前途的SNP将在Mayo乳腺摄影健康研究(MMHS)的3,000名绝经后参与者中进行基因分型(第3阶段)。从多阶段研究中出现的验证的SNP将在多阶段研究中进行评估,以评估生物学上可行的基因环境相互作用(AIM 2)。 NHS和MMHS都是具有血液样本,乳房X线密度数据以及有关乳腺癌危险因素的广泛暴露信息的人口相似的人群的良好人群。我们还将评估AIM 1的验证SNP是否与NHS以及乳腺癌和前列腺癌队列联盟(有6,000多个乳腺癌病例和对照组)中的乳腺癌风险有关。拟议的研究的结果将通过增加我们对乳腺癌的乳腺癌和病因的理解来补充乳腺癌GWASS的结果。这是一个独特的,成本效率且及时的建议,可以识别乳腺密度和乳腺癌的新遗传途径。鉴定与乳房X线照相密度相关的基因将允许研究其功能,因为它与密度和乳腺癌相关,并为预防乳腺癌预防和治疗的新型靶标提供了可能性。公共卫生相关性:通过专注于该疾病的可遗传危险因素,可以增强具有多因素原因(例如乳腺癌)的复杂疾病的遗传成分。乳腺X线摄影密度是一种高度可靠的,可靠的测量,定量性状,并且是乳腺癌的良好预测指标,独立于已知的乳腺癌危险因素。这项多阶段的全基因组乳房X线摄影密度研究将不仅鉴定与乳腺密度相关的新基因座,而且还可以通过增加对乳腺癌的乳腺癌和病因的理解来补充乳腺癌的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rulla M Tamimi其他文献
Rulla M Tamimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rulla M Tamimi', 18)}}的其他基金
Prediagnostic exposures, germline genetics, and triple negative breast cancer mutational and immune profiles
诊断前暴露、种系遗传学以及三阴性乳腺癌突变和免疫特征
- 批准号:
10596120 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Computational pathology to predict breast cancer risk in benign breast disease
计算病理学预测良性乳腺疾病的乳腺癌风险
- 批准号:
9047258 - 财政年份:2015
- 资助金额:
$ 45.92万 - 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳房X线照相密度和纹理特征与乳腺癌风险相关
- 批准号:
8896563 - 财政年份:2013
- 资助金额:
$ 45.92万 - 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳腺X线密度和纹理特征与乳腺癌风险的关系
- 批准号:
8741957 - 财政年份:2013
- 资助金额:
$ 45.92万 - 项目类别:
Mammographic density and texture features in relation to breast cancer risk
乳腺X线密度和纹理特征与乳腺癌风险的关系
- 批准号:
8629862 - 财政年份:2013
- 资助金额:
$ 45.92万 - 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
- 批准号:
8018197 - 财政年份:2009
- 资助金额:
$ 45.92万 - 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
- 批准号:
7777342 - 财政年份:2009
- 资助金额:
$ 45.92万 - 项目类别:
Whole Genome Association Study of Mammographic Density
乳腺X线密度的全基因组关联研究
- 批准号:
8239989 - 财政年份:2009
- 资助金额:
$ 45.92万 - 项目类别:
相似国自然基金
基于金属标记法定量研究水环境中微纳塑料的生物过程及其影响机制
- 批准号:
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
新疆胀果甘草黄酮类成分及合成衍生物的制备、对肿瘤干细胞标记物的影响、抗宫颈癌活性及作用机制研究
- 批准号:81960625
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于示踪技术的土壤微食物网对长期秸秆还田潮土有机碳影响的研究
- 批准号:31800440
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
长期氮添加对典型草原生态系统土壤有机碳稳定性影响机制的研究
- 批准号:31870440
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
5-HTTLPR基因多态性对睡眠依赖性记忆巩固的影响及机制研究
- 批准号:31800924
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Identifying correlates of risk for future tuberculosis disease progression in children (INTREPID)
确定儿童未来结核病进展风险的相关性 (INTREPID)
- 批准号:
10637036 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
- 批准号:
10674401 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别: