Project 3
项目3
基本信息
- 批准号:10443849
- 负责人:
- 金额:$ 44.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelBehavioralBiological AssayBiological ModelsBrainCGG repeatCellsCerebrumClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCognitiveCollaborationsComplexDataDevelopmentDiseaseDrug ScreeningElectrophysiology (science)EvaluationExhibitsFDA approvedFMR1FailureFragile X SyndromeGABA ReceptorGene Expression ProfileGenesGeneticGenomicsHigh-Throughput Nucleotide SequencingHumanHuman CharacteristicsHuman DevelopmentHuman bodyIndividualInheritedIntellectual functioning disabilityLibrariesLinkMediatingMessenger RNAMetabotropic Glutamate ReceptorsMetforminMethodsModelingMolecularMusNamesNeuronsOrganOrganogenesisOrganoidsOutcomePathologicPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhasePhase III Clinical TrialsPhenotypePluripotent Stem CellsPropertyPublishingRegulationReporterRibosomal Protein S6 KinaseRoleSamplingSignal TransductionStructureTestingTherapeuticTherapeutic EffectTissuesWorkantagonistautism spectrum disorderbasecell typedisease phenotypedrug developmentdrug repurposingepigenomicsfunctional lossgamma-Aminobutyric Acidgenome editinghuman diseasehuman modelinduced pluripotent stem cellinhibitorinterestkinase inhibitormolecular phenotypemouse modelnerve stem cellnew therapeutic targetnovelnovel strategiesnovel therapeutic interventionpre-clinicalrisk variantscreeningsmall moleculestem cell modelsynergismtherapeutic genome editingtherapeutic targetthree dimensional cell culturethree-dimensional modelingtooltranscriptome sequencingtreatment strategyvirtual
项目摘要
Project Summary
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and a leading genetic
cause of autism spectrum disorders (ASD). FXS is caused by the loss of functional fragile X mental retardation
protein (FMRP). Previous works have focused on the role of FMRP as a translational regulator, and many mRNA
targets of FMRP have been shown to be ASD-linked genes. Despite major progress to characterize underlying
disease mechanisms in animal models that has led to several clinical trials, including phase 3 clinical trials of
drugs modulating metabotropic glutamate and GABA receptors, improvements of behavioral and cognitive
outcomes in patients have unfortunately been largely unsuccessful. We believe that a major gap in the preclinical
phase of drug development for FXS can be addressed by the development of human FXS induced pluripotent
stem cell (iPSC) derived models, which will enable us to identify human specific therapeutic targets and evaluate
novel therapeutic approaches. Human iPSCs are pluripotent and are able to generate many different cell types.
Three-dimensional (3D) organoid culture of iPSCs has evolved from embryoid body culture, quite faithfully
following human organogenesis, and provides a new platform to investigate human brain development in a dish,
otherwise inaccessible to experimentation. We have developed FXS iPSC models, including 2D neural
progenitor cells (NPCs)/cortical neurons and 3D cortical organoids, and identified a number of FMRP target
mRNAs in the human context. Furthermore, we have observed abnormalities associated with the loss of FMRP
at molecular, cellular and electrophysiological levels in FXS iPSC models. Intriguingly, our preliminary data
suggest that PI3K inhibitors, but not mGluR5 antagonists, could rescue cellular phenotypes in human FXS iPSC
derived model systems, potentially validating the failure of positive preclinical mouse studies with negative
human trials. In this proposed study, we aim to use human specific iPSC models as translational tools to develop
novel therapeutic approaches for FXS. First, we will determine the therapeutic effects of compounds targeting
candidate pathways in FXS organoids (Aim 1). Second, we will develop CRISPR-based genomic and epigenomic
editing therapeutic approaches to reactivate FMR1 expression in FXS organoids (Aim 2). Third, we will conduct
molecular phenotype and FMR1-reactivation-based small molecule screens (Aim 3). Our proposed works will
lead to the identification of novel therapeutic targets and the development of new treatment strategies for FXS.
项目概要
脆性 X 综合征 (FXS) 是智力障碍最常见的遗传形式,也是一种主要的遗传性疾病
自闭症谱系障碍(ASD)的原因。 FXS是由于功能性脆性X智力障碍丧失而引起的
蛋白质(FMRP)。之前的工作主要集中在 FMRP 作为翻译调节因子的作用,以及许多 mRNA
FMRP 的目标已被证明是 ASD 相关基因。尽管在描述潜在特征方面取得了重大进展
动物模型中的疾病机制已导致多项临床试验,包括 3 期临床试验
调节代谢型谷氨酸和 GABA 受体的药物,改善行为和认知
不幸的是,患者的治疗结果基本上不成功。我们认为临床前研究存在重大差距
FXS 药物开发阶段可以通过开发人类 FXS 诱导多能来解决
干细胞(iPSC)衍生模型,这将使我们能够识别人类特定的治疗靶点并评估
新的治疗方法。人类 iPSC 具有多能性,能够产生许多不同的细胞类型。
iPSC 的三维 (3D) 类器官培养是从类胚体培养发展而来,非常忠实地
遵循人类器官发生,并提供一个新的平台来研究培养皿中人类大脑的发育,
否则无法进行实验。我们开发了 FXS iPSC 模型,包括 2D 神经网络
祖细胞 (NPC)/皮质神经元和 3D 皮质类器官,并确定了许多 FMRP 靶点
人类环境中的 mRNA。此外,我们还观察到与 FMRP 丢失相关的异常情况
FXS iPSC 模型中的分子、细胞和电生理水平。有趣的是,我们的初步数据
表明 PI3K 抑制剂(而非 mGluR5 拮抗剂)可以挽救人类 FXS iPSC 中的细胞表型
衍生的模型系统,可能验证阳性临床前小鼠研究的失败与阴性
人体试验。在这项拟议的研究中,我们的目标是使用人类特定的 iPSC 模型作为转化工具来开发
FXS 的新治疗方法。首先,我们将确定靶向化合物的治疗效果
FXS 类器官中的候选途径(目标 1)。其次,我们将开发基于CRISPR的基因组和表观基因组
编辑治疗方法以重新激活 FXS 类器官中的 FMR1 表达(目标 2)。三、我们将进行
分子表型和基于 FMR1 重新激活的小分子筛选(目标 3)。我们提出的作品将
导致 FXS 新治疗靶点的确定和新治疗策略的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PENG JIN其他文献
PENG JIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PENG JIN', 18)}}的其他基金
Elucidating the Roles of Transposable Elements in Alzheimer's and related dementias
阐明转座元件在阿尔茨海默病和相关痴呆症中的作用
- 批准号:
10682494 - 财政年份:2022
- 资助金额:
$ 44.73万 - 项目类别:
Elucidating the Roles of Transposable Elements in Alzheimer's and related dementias
阐明转座元件在阿尔茨海默病和相关痴呆症中的作用
- 批准号:
10682494 - 财政年份:2022
- 资助金额:
$ 44.73万 - 项目类别:
Elucidating the Roles of Transposable Elements in Alzheimer's and related dementias
阐明转座元件在阿尔茨海默病和相关痴呆症中的作用
- 批准号:
10518654 - 财政年份:2022
- 资助金额:
$ 44.73万 - 项目类别:
FMRP-mediated Regulation in Human Brain Development and Therapeutic Advancement
FMRP 介导的人脑发育和治疗进展调节
- 批准号:
10443845 - 财政年份:2020
- 资助金额:
$ 44.73万 - 项目类别:
FMRP-mediated Regulation in Human Brain Development and Therapeutic Advancement
FMRP 介导的人脑发育和治疗进展调节
- 批准号:
10678925 - 财政年份:2020
- 资助金额:
$ 44.73万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别: