An Economical Point-of-Care Software Solution Prototype for Medication Prior Authorization

用于药物事先授权的经济型护理点软件解决方案原型

基本信息

  • 批准号:
    10079987
  • 负责人:
  • 金额:
    $ 30.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT This STTR Phase I project uses mixed-method formative evaluation strategies to develop, test, and evaluate an alpha prototype of Breezmed, a point-of-care electronic prior authorization web-based platform. Prior authorization burdens the current medical system, hampering a provider’s ability to efficiently prescribe medication and in a timely fashion. This often leads to treatment non-compliance among patients and is particularly onerous for mental illnesses, which often require rapid stabilization with prescription medication. There is also evidence of high treatment non-compliance if medications are expensive or difficult to obtain. Moreover, substantial empirical evidence reinforces high levels of provider burnout stemming from the tedium required to obtain prior authorization from insurers. The lag between when the provider electronically transmits the prescription to the pharmacy and when actual dispensing occurs burdens patients too, who routinely find out their medication is not covered only after they have traveled to the pharmacy to obtain the medication. Recent surveys of providers conducted by AMA and other healthcare advocacy organizations show a considerable loss of workforce hours that could be prudently spent providing treatment, but is instead allocated to peer-to-peer consultations or completing forms required for insurance approval. These manual processes consume precious time and resources and detract from needed clinical practice time. Breezmed offers a software-as-a-solution web-based platform that seamlessly and securely integrates with existing electronic health record systems. The provider initiates Breezmed at the point-of-care drawing off diagnostic information, patient treatment history, insurance authorization requirements and formulary rules to efficiently order medication. The platform offers considerable economic and societal benefits and can securely piggyback to existing EHRs with minimal workflow disruption. The proposed study involves three integrated arms including a consumer preference survey administered to a nationally recruited panel of physicians, nurse practitioners, physician assistants, and pharmacists. From this panel sample we further recruit focus group participants to explore in greater detail barriers to prior authorization and probe computer-mediated solutions. We also utilize key informant interviews with hospital administrators, healthcare technology experts in medical informatics, and insurers, and use this detailed information to construct Breezmed’s wireframe architecture. We also conduct live usability tests with a simulated EHR and test the Application Program Interface with the EPIC medical records system to ensure smooth linkages in a secure HIPAA compliant environment. We have partnered with H4 technology, an Omaha- based web application development company, and also the University of Nebraska Methodology and Evaluation Research Core to conduct the formative evaluation components. The project benefits from an advisory board with expertise in medical care and information technology, and a team of experienced faculty at UNMC to shepherd timely execution of the grant.
抽象的 该STTR I期项目使用混合方法形成性评估策略来开发,测试和评估 BreezMed的Alpha原型,这是一个护理点电子的先验授权基于Web的平台。事先的 授权伯恩伦斯当前的医疗系统,阻碍了提供商有效开处方的能力 药物和及时的方式。这通常会导致患者之间的治疗不合规,IS 对于精神疾病特别繁重,通常需要使用处方药快速稳定。 如果药物昂贵或难以获得,也有证据表明,高度治疗不合规。 此外,大量的经验证据加强了由乏味的高水平提供者的倦怠 要求从确保获得事先授权。当提供商电子传输之间的滞后 药房的处方以及实际分发也发生了伯恩斯患者,他们通常会发现 仅在他们去药房获得药物治疗后,他们的药物不涵盖。最近的 AMA和其他医疗保健倡导组织对提供者进行的调查显示了相当大的损失 可以谨慎地花费提供治疗的劳动力时间,而是分配给点对点 咨询或填写保险批准所需的表格。这些手动过程消耗了珍贵 时间和资源,并损害所需的临床实践时间。 Breezmed提供了一个软件 基于Web的平台,无缝且与现有的电子健康记录系统无缝并安全地集成。这 提供者在护理点上启动诊断信息,患者治疗病史, 保险授权要求和公式化规则,以有效订购药物。平台提供 巨大的经济和社会福利,可以用最小的工作流程将现有的EHR牢固地背包 破坏。拟议的研究涉及三个集成的武器,包括消费者偏好调查 管理由全国招募的医师,护士从业人员,医师助理和 药剂师。在此面板样本中,我们进一步招募了焦点小组参与者,以更详细地探索 事先授权和探测计算机介导的解决方案的障碍。我们还利用关键的线人访谈 与医院管理员,医疗保健技术专家有关医疗信息的专家并确保并使用 详细信息以构建微风的线框体系结构。我们还通过 模拟EHR并与Epic医疗记录系统测试申请程序接口,以确保 在安全HIPAA的环境中平稳链接。我们已经与奥马哈的H4 Technology合作 基于Web应用程序开发公司以及内布拉斯加州大学的方法论和评估 进行形成性评估组件的研究核心。该项目受益于顾问委员会 拥有医疗和信息技术方面的专业知识,以及UNMC的一支经验丰富的教师团队 牧羊人及时执行赠款。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Stephen Salzbrenn...的其他基金

An Economical Point-of-Care Software Solution Prototype for Medication Prior Authorization
用于药物事先授权的经济型护理点软件解决方案原型
  • 批准号:
    10388454
    10388454
  • 财政年份:
    2020
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
NURBS参数化的自交理论与算法研究
  • 批准号:
    12301490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分组密码算法后门的研究
  • 批准号:
    62302293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时序深度可加网络的算法与学习理论研究
  • 批准号:
    62306338
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
  • 批准号:
    10740079
    10740079
  • 财政年份:
    2023
  • 资助金额:
    $ 30.14万
    $ 30.14万
  • 项目类别: