Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
基本信息
- 批准号:9364295
- 负责人:
- 金额:$ 58.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-05 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAllelesAntimalarialsBiotinylationCRISPR/Cas technologyCarrier ProteinsCell membraneChemicalsCholesterolCholesterol HomeostasisClinicalCollaborationsComplementCritical PathwaysDevelopmentDoseDrug resistanceExclusionExposure toFutureGene ExpressionGenesHomeostasisHypersensitivityInvestigationLeadLife Cycle StagesMaintenanceMalariaMammalian CellMediatingMedicineModelingMolecularMorphologyMutateMutationNa(+)-K(+)-Exchanging ATPaseNamesOralParasite resistanceParasitesPathway interactionsPatientsPharmaceutical PreparationsPhase II Clinical TrialsPhenotypePhysiologicalPlasmodiumPlasmodium falciparumProcessProteinsRegulatory PathwayResistanceRoleSodiumSourceSurveysTechnologyUrsidae FamilyWorkasexualcholesterol transporterscostdrug candidatedrug developmentdrug discoveryfeedingfitnessin vivoindividual patientinsightkillingsknock-downmutantnovelnovel therapeuticspharmacophoreresponse
项目摘要
With hundreds of millions of malaria cases being treated with antimalarial drugs each year and with each
individual patient bearing hundreds of billions of malaria parasites, it is necessary to continue to feed the
antimalarial pipeline with new drugs to counter the likely emergence of resistance. In recent years several
novel antimalarial compounds have been discovered with the ability to disrupt Na+ homeostasis in malaria
parasites. Four of these (a spiroindolone, a pyrazoleamide, a dihydroisoquinolone, and a thiotriazole) have
been designated clinical drug candidates. Remarkably, these drugs belong to very different chemical classes
with distinct pharmacophores and activity against different stages of malaria parasite life cycle. Importantly, all
these drugs show fast clearance of parasites in vivo. Parasites resistant to several of these compounds have
shown a range of mutations within a P-type ATPase, PfATP4, that is now believed to be a Na+ pump. Thus,
influx of Na+ through inhibition of PfATP4 is considered to be the common mechanism of action for all these
compounds. Our work over the last few years has revealed that, while mutations in PfATP4 are necessary for
resistance to all of these compounds, they are not always sufficient to generate the full level of resistance. We
have found that pyrazoleamide-resistant parasites bear additional mutations, which are required to impart full
resistance in conjunction with PfATP4 mutations, suggesting epistatic regulatory components to PfATP4
activity. Our investigations of physiological consequences of Na+ influx into the parasite have revealed some
dramatic changes suggesting a hitherto unknown regulatory pathway that is perturbed by inappropriate
cytosolic Na+ levels in the parasite. Therefore, a thorough investigation of molecular pathways affected by
disruption of Na+ homeostasis in malaria parasites is both necessary and likely to provide further insights to
guide future drug discovery and development. Recent advances in technology for gene editing and conditional
gene expression in Plasmodium falciparum make it now possible to unravel these pathways in unprecedented
details. By applying these approaches, we will investigate the role of PfATP4 in maintenance of Na+ and
cholesterol homeostasis in P. falciparum. We will assess phenotypic consequences of resistance-associated
mutations in PfATP4, and study the role of mutations in genes other than PfATP4 that affect drug resistance in
combination with PfATP4 mutations. We will investigate a putative plasma membrane cholesterol transporter
that is affected by these new antimalarials. These studies will advance our understanding of novel molecular
pathways that we have validated as targets for potent antimalarial drugs in development.
每年有数亿疟疾病例接受抗疟药物治疗,并且每年都有数亿疟疾病例接受抗疟药物治疗。
个别患者携带数千亿疟疾寄生虫,有必要继续喂养
抗疟新药管道,以应对可能出现的耐药性。近年来数
新型抗疟化合物被发现能够破坏疟疾中的 Na+ 稳态
寄生虫。其中四种(螺吲哚酮、吡唑酰胺、二氢异喹诺酮和硫代三唑)具有
被指定为临床候选药物。值得注意的是,这些药物属于截然不同的化学类别
对疟疾寄生虫生命周期的不同阶段具有独特的药效团和活性。重要的是,所有
这些药物可快速清除体内寄生虫。对其中几种化合物具有抗药性的寄生虫
显示了 P 型 ATP 酶 PfATP4 内的一系列突变,现在认为该酶是 Na+ 泵。因此,
通过抑制 PfATP4 流入 Na+ 被认为是所有这些药物的共同作用机制
化合物。我们过去几年的工作表明,虽然 PfATP4 的突变对于
对所有这些化合物的耐药性,它们并不总是足以产生全部的耐药性。我们
发现吡唑酰胺抗性寄生虫带有额外的突变,这些突变需要赋予完全
耐药性与 PfATP4 突变相关,表明 PfATP4 的上位调节成分
活动。我们对 Na+ 流入寄生虫的生理后果的研究揭示了一些
巨大的变化表明迄今为止未知的监管途径受到不当行为的干扰
寄生虫的胞质 Na+ 水平。因此,对受影响的分子途径进行彻底的研究
疟疾寄生虫中 Na+ 稳态的破坏不仅是必要的,而且可能为以下方面提供进一步的见解:
指导未来的药物发现和开发。基因编辑和条件技术的最新进展
恶性疟原虫中的基因表达使得现在有可能以前所未有的方式解开这些途径
细节。通过应用这些方法,我们将研究 PfATP4 在维持 Na+ 和
恶性疟原虫中的胆固醇稳态。我们将评估耐药相关的表型后果
PfATP4 突变,并研究 PfATP4 以外基因突变影响耐药性的作用
与 PfATP4 突变的组合。我们将研究一种假定的质膜胆固醇转运蛋白
受到这些新抗疟药的影响。这些研究将增进我们对新型分子的理解
我们已经验证了这些途径是正在开发的有效抗疟药物的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AKHIL B VAIDYA其他文献
AKHIL B VAIDYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AKHIL B VAIDYA', 18)}}的其他基金
Molecular pathways affected by drugs that disrupt Na+ and lipid homeostasis in malaria parasites
破坏疟原虫中钠和脂质稳态的药物影响的分子途径
- 批准号:
10659924 - 财政年份:2017
- 资助金额:
$ 58.83万 - 项目类别:
Molecular Pathways Affected by Drugs that Disrupt Na+ Homeostasis in Malaria Parasites
破坏疟原虫 Na 稳态的药物影响的分子途径
- 批准号:
9913475 - 财政年份:2017
- 资助金额:
$ 58.83万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8320487 - 财政年份:2012
- 资助金额:
$ 58.83万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8416318 - 财政年份:2012
- 资助金额:
$ 58.83万 - 项目类别:
Molecular Pathways Targeted by Potent Antimalarial Pyrazole Compounds
有效抗疟吡唑化合物靶向的分子途径
- 批准号:
8605504 - 财政年份:2012
- 资助金额:
$ 58.83万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7145646 - 财政年份:2006
- 资助金额:
$ 58.83万 - 项目类别:
Tools for Genomic Investigations of Plasmodium vivax
间日疟原虫基因组研究工具
- 批准号:
7232437 - 财政年份:2006
- 资助金额:
$ 58.83万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
7002735 - 财政年份:2003
- 资助金额:
$ 58.83万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6836481 - 财政年份:2003
- 资助金额:
$ 58.83万 - 项目类别:
BIOENERGETICS AND PROTON PUMPS IN MALARIA PARASITES
疟疾寄生虫中的生物能量学和质子泵
- 批准号:
6760043 - 财政年份:2003
- 资助金额:
$ 58.83万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 58.83万 - 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:
10906499 - 财政年份:2023
- 资助金额:
$ 58.83万 - 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:
10747039 - 财政年份:2023
- 资助金额:
$ 58.83万 - 项目类别:
Loss of VCP Function in Frontotemporal Lobar Degeneration
额颞叶变性导致 VCP 功能丧失
- 批准号:
10440933 - 财政年份:2022
- 资助金额:
$ 58.83万 - 项目类别:
Modeling myosin mechanobiology towards understanding the mechanisms of hypertrophic cardiomyopathy
模拟肌球蛋白力学生物学以了解肥厚型心肌病的机制
- 批准号:
10470295 - 财政年份:2021
- 资助金额:
$ 58.83万 - 项目类别: