A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
基本信息
- 批准号:10665540
- 负责人:
- 金额:$ 62.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcousticsAnatomyBloodBreastBreast Magnetic Resonance ImagingClinicClinicalClinical TrialsCommunitiesComputer ModelsComputing MethodologiesConsumptionCoupledDataDetectionDevelopmentEthicsFutureGenerationsGoalsHemoglobinHumanHypoxiaImageIonizing radiationKnowledgeLesionLightMalignant NeoplasmsMammary Gland ParenchymaMammary UltrasonographyMammographyMeasurementMeasuresMetabolicMetabolismMethodsModalityModelingOpticsOxygenPathologicPhysicsPhysiologicalPlayProbabilityProcessPropertyResearchResearch PersonnelResolutionRoentgen RaysRoleSystemTechniquesTechnologyTimeTissue imagingTissuesTranslatingTranslationsX-Ray Computed Tomographyaccurate diagnosisangiogenesisbreast cancer diagnosisbreast imagingcancer imagingclinical developmentclinical imagingcomputer frameworkcomputerized toolscostcost efficientdata acquisitiondensitydesigndiffuse optical tomographyexperimental studyimage reconstructionimagerimaging modalityimaging studyin silicointerestmalignant breast neoplasmnon-invasive imagingnovelopen sourceoptoacoustic tomographypublic health relevancequantitative imagingreconstructionsimulationtooltumortumor growthtumor progressionvirtual imaging
项目摘要
ABSTRACT
Optoacoustic tomography (OAT), also known as photoacoustic computed tomography, is a non-invasive
imaging modality actively being developed for breast cancer imaging and other biomedical applications. A
unique feature of OAT is the ability to produce an image based on the endogenous optical contrast associated
with the concentration and oxygenation state of hemoglobin within tissue, without ionizing radiation and without
the loss of spatial resolution typically associated with purely optical techniques such as optical diffusion
tomography. Because aggressively growing malignant breast tumors tend to be under hypoxia and decreased
blood oxygen saturation due to substantially increased metabolic activity in comparison to healthy tissue, an
optimized and validated OAT system can be a powerful tool for the management of breast cancer by assessing
density of the tumor microvasculature and its blood oxygenation.
Currently, there is no validated OAT method that is sufficiently accurate for widespread clinical imaging of
the breast; important issues such as optimal hardware and image reconstruction designs, the ability to resolve
lesions at depth, and quantitative imaging remain unresolved. Due to the competing requirements of light
delivery and acoustic detection, a variety of different system designs for breast OAT have been proposed; this
is unlike in x-ray mammography, breast MRI and breast ultrasound, where very similar implementations are in
use per modality. Considering the large number of parameters involved, it is infeasible to systematically
optimize breast OAT through human trials due to time- and cost-constraints and ethical concerns. However,
virtual imaging trials (VITs), where an imaging study is conducted in silico by use of representative numerical
phantoms and imaging models, can offer a rapid and cost-efficient means of assessing and optimizing new
imaging concepts and technologies such as OAT. The ability to conduct VITs for 3D OAT is currently lacking.
The broad objective of this project is to develop, validate, and demonstrate computational tools for
performing VITs that can inform the development of clinically viable and effective 3D breast OAT technologies.
This will afford researchers an unprecedented level of control in modeling and validating quantitative OAT
imaging of the tumor and tissue oxygen saturation distributions necessary for assessing breast cancer. The
results will be the first of their kind evaluating the task-based merits and capabilities of OAT and the knowledge
attainable in these studies is critical for translating this technology to the clinic.
The Specific Aims of the project are: Aim 1. To develop multi-physics simulation tools for the in silico
simulation of realistic measurement data in 3D breast OAT; Aim 2. To systematically develop and refine
quantitative OAT image reconstruction methods; Aim 3. To conduct physical experiments that will be used to
validate the computational models; Aim 4. To conduct VITs to explore quantitative OAT system optimization.
抽象的
光声断层扫描(OAT),也称为光声计算机断层扫描,是一种非侵入性
正在积极开发用于乳腺癌成像和其他生物医学应用的成像方式。一个
OAT 的独特之处在于能够根据相关的内生光学对比度生成图像
与组织内血红蛋白的浓度和氧合状态相关,无电离辐射且无
通常与光扩散等纯光学技术相关的空间分辨率损失
断层扫描。因为侵袭性生长的恶性乳腺肿瘤往往在缺氧的情况下而减少
与健康组织相比,由于代谢活动显着增加而导致血氧饱和度
经过优化和验证的 OAT 系统可以通过评估来成为乳腺癌管理的强大工具
肿瘤微血管的密度及其血液氧合。
目前,还没有经过验证的 OAT 方法足够准确,可用于广泛的临床成像
乳房;重要问题,例如最佳硬件和图像重建设计、解决问题的能力
深度病变和定量成像仍未解决。由于光的竞争要求
输送和声学检测,已经提出了多种不同的乳腺 OAT 系统设计;这
与 X 射线乳房 X 光检查、乳腺 MRI 和乳腺超声不同,它们的实现非常相似
按模态使用。考虑到涉及的参数数量较多,无法系统地进行
由于时间和成本限制以及道德问题,通过人体试验优化乳房燕麦。然而,
虚拟成像试验 (VIT),通过使用代表性数值在计算机上进行成像研究
体模和成像模型,可以提供一种快速且经济高效的方法来评估和优化新的
成像概念和技术,例如 OAT。目前缺乏对 3D OAT 进行 VIT 的能力。
该项目的总体目标是开发、验证和演示计算工具
执行 VIT 可以为临床上可行且有效的 3D 乳房 OAT 技术的开发提供信息。
这将为研究人员在建模和验证定量 OAT 方面提供前所未有的控制水平
评估乳腺癌所需的肿瘤和组织氧饱和度分布成像。这
结果将是第一个评估 OAT 和知识的基于任务的优点和能力的结果
这些研究中所实现的目标对于将该技术转化为临床至关重要。
该项目的具体目标是: 目标 1. 开发用于计算机模拟的多物理场仿真工具
3D 乳房 OAT 中真实测量数据的模拟;目标2.系统地开发和完善
定量OAT图像重建方法;目标 3. 进行物理实验,用于
验证计算模型;目标 4. 进行 VIT 来探索定量 OAT 系统优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 62.95万 - 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
- 批准号:
10705173 - 财政年份:2022
- 资助金额:
$ 62.95万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 62.95万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
- 批准号:
9927852 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9888370 - 财政年份:2019
- 资助金额:
$ 62.95万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 62.95万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786355 - 财政年份:2023
- 资助金额:
$ 62.95万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786256 - 财政年份:2023
- 资助金额:
$ 62.95万 - 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10461534 - 财政年份:2022
- 资助金额:
$ 62.95万 - 项目类别: