Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
基本信息
- 批准号:10017970
- 负责人:
- 金额:$ 51.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAdoptionAlgorithmsAwardBenignBreastCharacteristicsClinicalClinical DataClinical effectivenessComputer SimulationCoupledDataDetectionDevelopmentDiagnosticDiseaseEquationEvaluationFormulationFrequenciesHeightImageIonizing radiationLocationMammary UltrasonographyMammographyMeasuresMethodsModalityMorphologic artifactsNoiseNormal tissue morphologyOutcomePhysicsPhysiologic pulseProbabilityPropertyRadiationReaderReportingResolutionRoentgen RaysScreening procedureShapesSliceSpecificitySpeedSystemTechnologyThinnessTimeTissuesTransducersUltrasonographyVisualWorkX-Ray Computed Tomographyaccurate diagnosisattenuationbasebreast cancer diagnosisbreast imagingbreast lesionclinical applicationexperienceimage reconstructionimaging modalityimprovedinnovationmalignant breast neoplasmmemberpublic health relevancequantitative ultrasoundradiologistreconstructionsoft tissuesoundtomography
项目摘要
ABSTRACT
The broad objective of this project is to develop and refine advanced tomographic image reconstruction
methods for ultrasound computed tomography (UST), referred to as waveform inversion methods, which will
permit high resolution and quantitative breast imaging. These methods will yield volumetric estimates of the
speed of sound (SOS) and acoustic attenuation (AA) distributions within the breast. The SOS and AA
represent bio-parameters that can reveal differences in the geometric and elastic properties of tissue. Such
information can greatly facilitate the differentiation of breast cancer from normal tissue or benign disease.
Accordingly, UST holds great potential for improving the detection and management of breast cancer since it
exploits effective endogenous tissue contrasts, is radiation- and breast-compression-free, and is relatively
inexpensive. The SoftVue whole breast UST system developed by members of our team has been awarded
FDA 510(k) clearance for diagnostic applications.
Most reported methods for breast UST are ray-based and do not take into account acoustic diffraction
effects; this results in images of relatively poor spatial resolution and accuracy. This is highly undesirable for
breast imaging applications, in which the ability to resolve fine features is important for distinguishing healthy
from diseased tissues. Waveform inversion methods for UST image reconstruction are based on the full
acoustic wave equation and can circumvent the limitations of ray-based methods, thereby permitting high-
resolution quantitative UST breast imaging. However, the application of waveform inversion methods to breast
UST employing ring-transducer arrays has to-date employed 2D reconstruction methods to estimate sectional
UST images. Because 3D wave propagation physics and the focusing properties of the transducers are not
accounted for in this 2D approach, the images can contain significant artifacts and degraded spatial resolution.
In this project, we will develop and optimize 3D UST waveform inversion methods for reconstructing SOS
and AA images of the breast of unprecedented quality. These methods will utilize acoustic data measured at
one or more locations of the ring-transducer array and will compensate for 3D wave physics and the focusing
properties of the transducers. In this approach, a thin (in height) volume will be reconstructed instead of a
single 2D slice. Whole breast imaging can then be accomplished by merging the thin reconstructed volumes
corresponding to different locations instead of stacking lower quality 2D slices as done in existing 2D methods.
The developed methods will be evaluated and refined by use of phantom and clinical data. The specific aims of
this project are: (1) Develop waveform inversion methods for high resolution SOS imaging; (2) Develop
waveform inversion methods for high resolution AA imaging; (4) Refinement of reconstruction methods via
breast phantom studies; (5) Assessment and refinement of reconstruction methods using clinical data.
抽象的
该项目的总体目标是开发和完善先进的断层扫描图像重建
超声计算机断层扫描 (UST) 方法,称为波形反演方法,该方法将
允许高分辨率和定量乳腺成像。这些方法将产生体积估计
乳房内的声速(SOS)和声衰减(AA)分布。 SOS 和 AA
代表可以揭示组织几何和弹性特性差异的生物参数。这样的
信息可以极大地促进乳腺癌与正常组织或良性疾病的区分。
因此,UST 在改善乳腺癌的检测和管理方面具有巨大的潜力,因为它
利用有效的内源性组织对比,无辐射和乳房压缩,并且相对
便宜。我团队成员开发的SoftVue全乳UST系统荣获
FDA 510(k) 诊断应用许可。
大多数报道的乳腺 UST 方法都是基于射线的,没有考虑声学衍射
影响;这导致图像的空间分辨率和精度相对较差。这是非常不希望的
乳腺成像应用,其中分辨精细特征的能力对于区分健康状况非常重要
来自患病组织。 UST 图像重建的波形反演方法基于完整的
声波方程,可以规避基于射线的方法的局限性,从而允许高
分辨率定量 UST 乳腺成像。然而,波形反演方法在乳房中的应用
采用环形换能器阵列的 UST 迄今为止已采用 2D 重建方法来估计截面
UST 图像。因为 3D 波传播物理学和换能器的聚焦特性不
在这种 2D 方法中,图像可能包含明显的伪影和降低的空间分辨率。
在这个项目中,我们将开发和优化用于重建SOS的3D UST波形反演方法
以及前所未有质量的乳房 AA 图像。这些方法将利用在以下位置测量的声学数据
环形换能器阵列的一个或多个位置,并将补偿 3D 波物理和聚焦
传感器的特性。在这种方法中,将重建一个薄(高度)体积而不是一个
单个二维切片。然后可以通过合并薄的重建体积来完成整个乳房成像
对应于不同的位置,而不是像现有 2D 方法那样堆叠较低质量的 2D 切片。
所开发的方法将通过使用模型和临床数据进行评估和完善。具体目标
该项目是:(1)开发高分辨率SOS成像的波形反演方法; (2) 开发
用于高分辨率AA成像的波形反演方法; (4) 重构方法的细化
乳房模型研究; (5)利用临床数据评估和完善重建方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
- 批准号:
10705173 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
- 批准号:
9927852 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9888370 - 财政年份:2019
- 资助金额:
$ 51.65万 - 项目类别:
相似海外基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy
用于引导闪光放射治疗的电离辐射声学成像 (iRAI) 方法
- 批准号:
10707124 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别: