A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
基本信息
- 批准号:10708132
- 负责人:
- 金额:$ 52.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAblationAcousticsAddressAdjuvant ChemotherapyAdoptionAdvanced DevelopmentAnatomyAreaAxillary lymph node groupBasic ScienceBenchmarkingBenignBiopsyBloodBlood flowBreast Cancer PatientCardiologyCellular PhoneClinicClinicalClinical ResearchClipCodeDataDependenceDevelopmentDevicesDiagnosisDiagnosticDiscipline of obstetricsEquipmentFoundationsFrequenciesGynecologyIllinoisImageImaging technologyInterventionIonizing radiationMalignant - descriptorMarketingMedicalMedical Device DesignsMotionNeoadjuvant TherapyOperative Surgical ProceduresPathologyPatientsPerformancePhasePlayProceduresRadiology SpecialtyRoleScanningSolidSpeedSystemTechniquesTechnologyTexasThree-Dimensional ImagingTimeTissuesTrainingTransducersUltrasonic TransducerUltrasonographyUniversitiesVisualization softwareWaterWorkclinical applicationclinical imagingcostdisease diagnosiselastographyfallshandheld equipmentimaging modalityimaging studyimaging systemimprovedin vivolight weightmalignant breast neoplasmmeetingsmicrosensormicrosystemsnon-invasive imagingnovelportabilityradiologistsuperresolution imagingtechnology research and developmenttoolultrasounduser-friendlywireless communication
项目摘要
PROJECT SUMMARY/ABSTRACT
Three-dimensional ultrasound imaging (3D-US) is an essential clinical tool for visualizing, navigating, and
investigating patient anatomy and pathologies in real time in 3D. Owing to its moderate cost and lack of ionizing
radiation, 3D-US plays an important role in many clinical applications for diagnosis and intervention. Despite the
significant clinical value and potential, 3D-US is not a widely accessible and capable technology with its current
implementations: existing 3D-US solutions are challenged by many limitations such as low imaging speed, low
functionality, bulky devices that are inconvenient to use, and a high cost of designated equipment. For decades,
there has been a long-standing quest for developing an accessible, functional, and user-friendly 3D-US
technology. In this proposal, we will develop a new 3D-US solution (called FASTER) that uses a novel, fast-tilting
microfabricated acoustic reflector to achieve high-speed and high-functionality 3D-US imaging. The acoustic
reflector is water-immersible and enclosed in a clip-on device that is compact, lightweight, and low-cost. It can
be easily attached to and removed from different types of ultrasound transducers to turn a conventional 2D
ultrasound system into 3D. Unlike conventional 3D-US technologies (e.g., wobbler transducers and 2D matrix
arrays), FASTER does not require the procurement of additional ultrasound transducers for different applications.
Also, FASTER achieves a much higher imaging volume rate (up to 1000 Hz) than conventional 3D-US
technologies. FASTER is compatible with most ultrasound systems on the market ranging from premium
scanners to portable and handheld devices. In this proposal, we will conduct basic technology development
research and carry out preliminary clinical studies to build a solid technical foundation for the FASTER 3D-US
technology. In Aim 1 we will focus on developing the Phase-1 FASTER device that uses a double-axis reflector
for extended range of imaging volume rate and field-of-view (FOV). We will also develop Phase-1 FASTER into
a stand-alone device that does not need external equipment and communicates wirelessly with the ultrasound
system. Aim 2 will focus on developing advanced imaging modes for FASTER, including 3D blood flow imaging
(3D-BFI) and 3D shear wave elastography (3D-SWE). Pilot clinical studies will be conducted for both Aims 1 and
2 to facilitate the development and optimization of the FASTER device and imaging sequences. In Aim 3 we will
conduct a clinical study to evaluate the performance of FASTER 3D-US in characterizing suspicious axillary
lymph nodes (ALNs) for breast cancer patients undergoing clinically indicated biopsy of ALN. We will also
evaluate the performance of FASTER in localizing clipped ALNs from patients undergoing neoadjuvant
chemotherapy. The study aims will be carried out by a team of experts in ultrasound imaging, micro sensors and
systems, medical device design, and breast cancer from the campuses of University of Illinois Urbana-
Champaign, Texas A&M University, and Mayo Clinic.
项目摘要/摘要
三维超声成像(3D-US)是可视化,导航和
在3D中实时研究患者的解剖结构和病理。由于其中等成本和缺乏电离
辐射,3D-US在许多诊断和干预的临床应用中起重要作用。尽管有
临床价值和潜力很大,3D-US并不是一项广泛访问且有能力的技术
实施:现有的3D-US解决方案受到许多限制的挑战,例如低成像速度,低
功能,不方便使用的笨重设备以及指定设备的高成本。几十年来,
长期以来一直寻求开发可访问,功能和用户友好的3D-US
技术。在此提案中,我们将开发一种新的3D-US解决方案(称为更快),该解决方案使用新颖的,快速倾斜
微生物反射器以实现高速和高功能3D-US成像。声学
反射器是可易受欢迎的,并封闭在紧凑,轻巧且低成本的夹具设备中。它可以
轻松地附着并从不同类型的超声传感器上删除以转动常规2D
超声系统分为3D。与传统的3D-US技术不同(例如,Wobbler传感器和2D矩阵
阵列),更快的速度不需要为不同的应用程序采购其他超声传感器。
同样,比传统的3D-US更快地达到更高的成像量率(最高1000 Hz)
技术。更快的速度与市场上的大多数超声系统兼容,从高级
扫描仪到便携式和手持设备。在此提案中,我们将进行基本技术开发
研究并进行初步临床研究,为更快的3D-US建立坚实的技术基础
技术。在AIM 1中,我们将专注于开发使用双轴反射器的快速设备
对于扩展成像量率和视野(FOV)的扩展范围。我们还将更快地开发1阶段1
不需要外部设备并与超声无线通信的独立设备
系统。 AIM 2将集中于更快地开发高级成像模式,包括3D血流成像
(3D-BFI)和3D剪切波弹性图(3D-SWE)。将针对目标1和
2促进更快的设备和成像序列的开发和优化。在目标3中,我们将
进行临床研究,以评估3D-US在表征可疑腋生方面的性能
接受临床表明ALN活检的乳腺癌患者的淋巴结(ALNS)。我们也会
评估从接受新辅助的患者的定位剪切ALN的速度更快的表现
化学疗法。该研究的目的将由超声成像,微传感器和
伊利诺伊大学Urbana大学校园的系统,医疗设备设计和乳腺癌 -
德克萨斯州A&M大学香槟和梅奥诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pengfei Song其他文献
Pengfei Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pengfei Song', 18)}}的其他基金
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 52.91万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Next-Generation Ultrasound Localization Microscopy
下一代超声定位显微镜
- 批准号:
10039725 - 财政年份:2020
- 资助金额:
$ 52.91万 - 项目类别:
Early prediction of colorectal liver metastases treatment response with ultrasound microvessel imaging
超声微血管成像早期预测结直肠肝转移治疗反应
- 批准号:
10084826 - 财政年份:2017
- 资助金额:
$ 52.91万 - 项目类别:
相似国自然基金
基于多时序纵向3D超声图像Siamese多任务网络早期预测pMMR型局部进展期直肠癌PD-1单抗联合放化疗疗效
- 批准号:82302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超声响应的3D压电纳米短纤维通过电信号调控骨髓间充质干细胞募集促骨缺损修复
- 批准号:82372572
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:62202092
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向3D芯片封装的双向复合超声键合机理及其换能系统设计与控制
- 批准号:52175392
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Simultaneous MRI/US for real-time liver ablation guidance and confirmation
同步 MRI/US 用于实时肝脏消融指导和确认
- 批准号:
10677721 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
AI-assisted Imaging and Prediction of Cardiac Arrhythmia Origins using 4D Ultrasound
使用 4D 超声进行人工智能辅助成像和心律失常起源预测
- 批准号:
10473146 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
- 批准号:
10460613 - 财政年份:2021
- 资助金额:
$ 52.91万 - 项目类别: