An Ionizing Radiation Acoustics Imaging (iRAI) Approach for guided Flash Radiotherapy
用于引导闪光放射治疗的电离辐射声学成像 (iRAI) 方法
基本信息
- 批准号:10707124
- 负责人:
- 金额:$ 65.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAddressAlgorithmsAnatomyAnimal ModelBiomedical EngineeringCancer PatientClinicalComputer SimulationDataData AnalyticsData ScienceDedicationsDepositionDetectionDevelopmentDoseDose RateElectron BeamElectronsEmerging TechnologiesEnsureFarGoFilmGeometryHeightImageImaging TechniquesInstitutionIonizing radiationIonsLesionMachine LearningMalignant NeoplasmsMapsMeasuresMethodsModalityMonitorMonte Carlo MethodMorphologyMusNoiseNormal tissue morphologyOutcomes ResearchPatient CarePatientsPenetrationPerformancePhysicsPhysiologic pulsePlayPositioning AttributePre-Clinical ModelProtonsQuality of lifeRadiationRadiation BiophysicsRadiation OncologyRadiation PhysicsRadiation therapyRadiology SpecialtyRattusReal-Time SystemsResolutionRiskRoleSafetySignal TransductionStructureSystemTechniquesTechnologyTestingTherapeuticTimeTissuesTranslationsTreatment EfficacyTreatment-related toxicityUltrasonographyWidthX-Ray Computed Tomographyabsorptionacoustic imaginganatomic imagingattenuationcancer radiation therapyclinical implementationclinical translationcost effectivedeep learningdeep learning algorithmdesigndetectordosimetryex vivo imagingexperimental studyfallsimage guidedimaging approachimaging modalityimaging systemimprovedin silicoin vivoin vivo Modelin vivo imaginginteroperabilityirradiationmachine learning algorithmmultidisciplinarypre-clinicalpreclinical studyproton beamquality assurancereal time monitoringreconstructionrisk minimizationsoft tissuespatiotemporaltemporal measurementtooltumorultrasound
项目摘要
SUMMARY
An emerging radiotherapy (RT) modality that utilizes ultra-high dose rate, known as FLASH-RT, has
demonstrated unprecedented ability for improving RT therapeutic ratio in preclinical studies and early clinical
cases. Because of lack of appropriate image-guidance technologies, these studies have been limited to superficial
irradiations and simplistic cases where monitoring of delivered dose is permissible using existing methods. This
severely handicaps the prospects of FLASH-RT and largely limits its promising impact for deep seated tumors,
which constitute most of RT cancer cases. It is widely recognized that currently used dosimetry technologies fall
short of providing the necessary guidance to deliver FLASH-RT in a practical clinical setting without exposing
the patient to tremendous risks that go far beyond the traditional RT delivery. Undoubtedly, there is an unmet
need to develop in vivo image-guidance techniques to safeguard FLASH-RT accurate delivery. We hold that these
challenges can be resolved by refining the emerging technology of ionizing radiation-induced acoustic imaging
(iRAI), which can be intrinsically paired with FLASH-RT delivery systems. iRAI is based on the known
thermoacoustic phenomenon in radiation physics, where acoustic waves are generated from thermoelastic
expansion of a substance following absorption of penetrating pulsated high energy radiation. Building upon our
multi-institutional multidisciplinary team with expertise in ultrasound (US) imaging, RT physics, data analytics,
and our promising preliminary results, we hypothesize that: (1) a dual-modality imaging system comprised of
iRAI and US (iRAI-US) can simultaneously image both tissue morphology and 3D dose deposition during
FLASH-RT delivery with high spatio-temporal resolutions; and (2) machine learning based reconstruction and
anomaly detection can effectively improve imaging quality and mitigate errors, respectively, for clinical
translation. Therefore, in this project we aim to exploit the technological potentials of iRAI-US and machine
learning for developing an image-guidance platform for effective and safe FLASH-RT delivery. We will
demonstrate its efficacy with electron and proton beams using computer simulations (in silico), tissue mimicking
phantoms, and relevant preclinical in vivo models. Specifically, we will (1) develop and test a dual-mode imaging
system for 3D radiation-acoustics dosimetry and US imaging for FLASH-RT; (2) evaluate the in vivo
performance of iRAI-US dual imaging during electron and proton FLASH-RT deliveries; and (3) adapt and
improve iRAI volumetric representation, temporal resolution and error detection for FLASH-RT using deep
machine learning algorithms (DeepRAI) towards effective clinical implementation.
Impact: Our proposed image-guided FLASH-RT, once validated, will offer a practical, robust, cost-effective,
and unique system for safeguarding FLASH-RT delivery. These advancements will address the current
challenges impeding the clinical translation of FLASH-RT and enable achieving its promise of limiting
radiotherapy toxicity to normal tissues and thereby improving cancer patient care and quality of life.
概括
使用超高剂量率的新兴放射疗法(RT)模式,称为Flash-RT
在临床前研究和早期临床上,证明了提高RT治疗比率的前所未有的能力
案例。由于缺乏适当的图像引导技术,这些研究仅限于表面
使用现有方法允许允许辐照和简单的情况。这
严重障碍闪存的前景,并在很大程度上限制了其对深座肿瘤的有希望的影响,
构成大多数RT癌症病例。人们广泛认识到,目前使用的剂量测定技术跌落
没有提供必要的指导以在实用的临床环境中提供闪存RT而不暴露
患者面临巨大的风险,远远超出了传统的RT交付。毫无疑问,有一个未满足的
需要开发体内图像引导技术以保护闪存-RT准确的传递。我们认为这些
可以通过完善电离辐射引起的声学成像的新兴技术来解决挑战
(IRAI),可以与Flash-RT输送系统内在配对。伊莱是基于已知的
辐射物理学中的热声现象,其中热弹性产生声波
吸收穿透性脉冲高能辐射后,物质的扩展。建立在我们的基础上
具有超声(US)成像,RT物理学,数据分析,具有专业知识的多机构多学科团队,
我们有希望的初步结果,我们假设:(1)由双模式成像系统组成
伊莱和我们(irai-us)可以同时想象组织形态和3D剂量沉积
具有高时空的分辨率的闪存-RT交付; (2)基于机器学习的重建和
异常检测可以有效地改善成像质量并减轻临床错误的错误
翻译。因此,在这个项目中,我们旨在利用Irai-US和Machine的技术潜力
学习开发图像指导平台,以进行有效且安全的闪存交付。我们将
使用计算机模拟(以硅硅)的形式证明其在电子和质子梁上的功效,模仿组织
幻影和相关的体内模型。具体来说,我们将(1)开发和测试双模式成像
3D辐射声学的系统剂量计和闪存的US成像; (2)评估体内
在电子和质子闪存-RT传递期间的IRAI-US双重成像的性能; (3)适应和
改善IRAI体积表示,时间分辨率和使用Deep的Flash-RT的错误检测
机器学习算法(DEEPRAI)朝着有效的临床实施。
影响:我们提出的图像引导的Flash-RT曾经验证,将提供实用,健壮,成本效益,
以及保护闪存交付的独特系统。这些进步将解决当前
挑战阻碍了Flash-RT的临床翻译并实现其限制的承诺
放疗对正常组织的毒性,从而改善癌症患者护理和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS R. BORTFELD其他文献
THOMAS R. BORTFELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS R. BORTFELD', 18)}}的其他基金
Automated interactive definition of the clinical target volume in radiation oncology
放射肿瘤学中临床靶区的自动交互定义
- 批准号:
10547813 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别:
Automated interactive definition of the clinical target volume in radiation oncology
放射肿瘤学中临床靶区的自动交互定义
- 批准号:
10342574 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别:
Reducing Range Uncertainties in Proton Radiation Therapy
减少质子放射治疗的范围不确定性
- 批准号:
8336787 - 财政年份:2011
- 资助金额:
$ 65.27万 - 项目类别:
Reducing Range Uncertainties in Proton Radiation Therapy
减少质子放射治疗的范围不确定性
- 批准号:
7523010 - 财政年份:2008
- 资助金额:
$ 65.27万 - 项目类别:
Management of Breathing effects in Radiotherapy Planning
放射治疗计划中呼吸效应的管理
- 批准号:
7626808 - 财政年份:2007
- 资助金额:
$ 65.27万 - 项目类别:
Management of Breathing effects in Radiotherapy Planning
放射治疗计划中呼吸效应的管理
- 批准号:
7318498 - 财政年份:2007
- 资助金额:
$ 65.27万 - 项目类别:
Management of Breathing effects in Radiotherapy Planning
放射治疗计划中呼吸效应的管理
- 批准号:
7455767 - 财政年份:2007
- 资助金额:
$ 65.27万 - 项目类别:
Management of Breathing effects in Radiotherapy Planning
放射治疗计划中呼吸效应的管理
- 批准号:
7848182 - 财政年份:2007
- 资助金额:
$ 65.27万 - 项目类别:
Management of Breathing effects in Radiotherapy Planning
放射治疗计划中呼吸效应的管理
- 批准号:
8074498 - 财政年份:2007
- 资助金额:
$ 65.27万 - 项目类别:
Multi-Criteria Intensity-Modulated Radiotherapy Optimization
多标准调强放射治疗优化
- 批准号:
7237949 - 财政年份:2004
- 资助金额:
$ 65.27万 - 项目类别:
相似国自然基金
基于多时序纵向3D超声图像Siamese多任务网络早期预测pMMR型局部进展期直肠癌PD-1单抗联合放化疗疗效
- 批准号:82302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超声响应的3D压电纳米短纤维通过电信号调控骨髓间充质干细胞募集促骨缺损修复
- 批准号:82372572
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于3D超声心动图影像和因果知识图谱的双心室功能综合定量分析方法研究
- 批准号:62202092
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向3D芯片封装的双向复合超声键合机理及其换能系统设计与控制
- 批准号:52175392
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 65.27万 - 项目类别:
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别:
Simultaneous MRI/US for real-time liver ablation guidance and confirmation
同步 MRI/US 用于实时肝脏消融指导和确认
- 批准号:
10677721 - 财政年份:2022
- 资助金额:
$ 65.27万 - 项目类别: